39 research outputs found

    Pretreatment with Resveratrol Prevents Neuronal Injury and Cognitive Deficits Induced by Perinatal Hypoxia-Ischemia in Rats

    Get PDF
    Despite advances in neonatal care, hypoxic-ischemic brain injury is still a serious clinical problem, which is responsible for many cases of perinatal mortality, cerebral palsy, motor impairment and cognitive deficits. Resveratrol, a natural polyphenol with important anti-oxidant and anti-inflammatory properties, is present in grapevines, peanuts and pomegranates. The aim of the present work was to evaluate the possible neuroprotective effect of resveratrol when administered before or immediately after a hypoxic-ischemic brain event in neonatal rats by analyzing brain damage, the mitochondrial status and long-term cognitive impairment. Our results indicate that pretreatment with resveratrol protects against brain damage, reducing infarct volume, preserving myelination and minimizing the astroglial reactive response. Moreover its neuroprotective effect was found to be long lasting, as behavioral outcomes were significantly improved at adulthood. We speculate that one of the mechanisms for this neuroprotection may be related to the maintenance of the mitochondrial inner membrane integrity and potential, and to the reduction of reactive oxygen species. Curiously, none of these protective features was observed when resveratrol was administered immediately after hypoxia-ischemia.Funding was provided by Basque Government IT 773/13 and BFI-2011-129. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    The endocannabinoid system in mental disorders: Evidence from human brain studies

    Get PDF
    Mental disorders have a high prevalence compared with many other health conditions and are the leading cause of disability worldwide. Several studies performed in the last years support the involvement of the endocannabinoid system in the etiopathogenesis of different mental disorders. The present review will summarize the latest information on the role of the endocannabinoid system in psychiatric disorders, specifically depression, anxiety, and schizophrenia. We will focus on the findings from human brain studies regarding alterations in endocannabinoid levels, cannabinoid receptors and endocannabinoid metabolizing enzymes in patients suffering mental disorders. Studies carried out in humans have consistently demonstrated that the endocannabinoid system is fundamental for emotional homeostasis and cognitive function. Thus, deregulation of the different elements that are part of the endocannabinoid system may contribute to the pathophysiology of several mental disorders. However, the results reported are controversial. In this sense, different alterations in gene and/or protein expression of CBI receptors have been shown depending on the technical approach used or the brain region studied. Despite the current discrepancies regarding cannabinoid receptors changes in depression and schizophrenia, present findings point to the endocannabinoid system as a pivotal neuromodulatory pathway relevant in the pathophysiology of mental disorders.This study was supported by the Spanish Ministry of Economy and Competitiveness (SAF2015-67457-R, MINECO/FEDER), the Plan Estatal de I+D+i 2013-2016, the Instituto de Salud Carlos III-Subdirección General de Evaluación y Fomento de la Investigación, Spanish Ministry of Economy, FEDER (PI13/01529) and the Basque Government (IT616/13). I I-L is a recipient of a Predoctoral Fellowship from the Basque Government. E F-Z is a recipient of a Predoctoral Fellowship from the University of Cantabria. CM is a recipient of a Postdoctoral Marie Skłodowska-Curie Individual Fellowship (H2020-MSCA-IF-2016, ID 747487)

    Cannabis use selectively modulates circulating biomarkers in the blood of schizophrenia patients

    Get PDF
    Cannabis use disorder is frequent in schizophrenia patients, and it is associated with an earlier age of onset and poor schizophrenia prognosis. Serotonin 2A receptors (5-HT2AR) have been involved in psychosis and, like Akt kinase, are known to be modulated by THC. Likewise, endocannabinoid system dysregulation has been suggested in schizophrenia. The presence of these molecules in blood makes them interesting targets, as they can be evaluated in patients by a minimally invasive technique. The aim of the present study was to evaluate 5-HT2AR protein expression and the Akt functional status in platelet homogenates of subjects diagnosed with schizophrenia, cannabis use disorder, or both conditions, compared with age- and sex-matched control subjects. Additionally, endocannabinoids and pro-inflammatory interleukin-6 (IL-6) levels were also measured in the plasma of these subjects. Results showed that both platelet 5-HT2AR and the active phospho (Ser473)Akt protein expression were significantly increased in schizophrenia subjects, whereas patients with a dual diagnosis of schizophrenia and cannabis use disorder did not show significant changes. Similarly, plasma concentrations of anandamide and other lipid mediators such as PEA and DEA, as well as the pro-inflammatory IL-6, were significantly increased in schizophrenia, but not in dual subjects. Results demonstrate that schizophrenia subjects show different circulating markers pattern depending on the associated diagnosis of cannabis use disorder, supporting the hypothesis that there could be different underlying mechanisms that may explain clinical differences among these groups. Moreover, they provide the first preliminary evidence of peripherally measurable molecules of interest for bigger prospective studies in these subpopulations.Eusko Jaurlaritza, Grant/Award Numbers: 2019111082, IT1512/22, ITIT1211-19; Ministerio de Sanidad, Grant/Award Number: PNSD2019I021; Spanish Ministry of Science and Innovation, Grant/Award Number: PID2019-106404RB-I0

    Activation of the orphan receptor GPR55 by lysophosphatidylinositol promotes metastasis in triple-negative breast cancer

    Full text link
    The orphan G protein-coupled receptor GPR55 has been directly or indirectly related to basic alterations that drive malignant growth: uncontrolled cancer cell proliferation, sustained angiogenesis, and cancer cell adhesion and migration. However, little is known about the involvement of this receptor in metastasis. Here, we show that elevated GPR55 expression in human tumors is associated with the aggressive basal/triple-negative breast cancer population, higher probability to develop metastases, and therefore poor patient prognosis. Activation of GPR55 by its proposed endogenous ligand lysophosphatidylinositol confers pro-invasive features on breast cancer cells both in vitro and in vivo. Specifically, this effect is elicited by coupling to Gq/11 heterotrimeric proteins and the subsequent activation, through ERK, of the transcription factor ETV4/PEA3. Together, these data show that GPR55 promotes breast cancer metastasis, and supports the notion that this orphan receptor may constitute a new therapeutic target and potential biomarker in the highly aggressive triple-negative subtypeThis work was supported by grants from Spanish Ministry of Economy and Competitiveness [PI11/00295 to CS, PI14/01101 to CS and EP-G, SAF2013-46183-R to MQ, and SAF2014-54705-R to MV-M, supported with European Regional Development (FEDER) funds] and Madrid Regional Government (S2010/BMD-2308 to MG, and 2010/BMD-2359 to MQ). EPG was a recipient of a Postdoctoral Research Contract from Fundación Científica Asociación Española Contra el Cáncer and a Federation of the Societies of Biochemistry and Molecular Biology (FEBS) Short-term Fellowship. SB-B and SC-L are recipients of a Formación de Profesorado Universitario (FPU) fellowship and a Ramón y Cajal research contract, respectively, from the Spanish Ministry of Economy and Competitivenes

    Therapeutic targeting of HER2–CB2R heteromers in HER2-positive breast cancer

    Get PDF
    There is a subtype of breast cancer characterized by the overexpression of the oncogene HER2. Although most patients with this diagnosis benefit from HER2-targeted treatments, some do not respond to these therapies and others develop resistance with time. New tools are therefore warranted for the treatment of this patient population, and for early identification of those individuals at a higher risk of developing innate or acquired resistance to current treatments. Here, we show that HER2 forms heteromer complexes with the cannabinoid receptor CB2R, the expression of these structures correlates with poor patient prognosis, and their disruption promotes antitumor responses. Collectively, our results support HER2–CB2R heteromers as new therapeutic targets and prognostic tools in HER2+ breast cancer

    The endocannabinoid system in mental disorders: Evidence from human brain studies

    Get PDF
    Mental disorders have a high prevalence compared with many other health conditions and are the leading cause of disability worldwide. Several studies performed in the last years support the involvement of the endocannabinoid system in the etiopathogenesis of different mental disorders. The present review will summarize the latest information on the role of the endocannabinoid system in psychiatric disorders, specifically depression, anxiety, and schizophrenia. We will focus on the findings from human brain studies regarding alterations in endocannabinoid levels, cannabinoid receptors and endocannabinoid metabolizing enzymes in patients suffering mental disorders. Studies carried out in humans have consistently demonstrated that the endocannabinoid system is fundamental for emotional homeostasis and cognitive function. Thus, deregulation of the different elements that are part of the endocannabinoid system may contribute to the pathophysiology of several mental disorders. However, the results reported are controversial. In this sense, different alterations in gene and/or protein expression of CB1 receptors have been shown depending on the technical approach used or the brain region studied. Despite the current discrepancies regarding cannabinoid receptors changes in depression and schizophrenia, present findings point to the endocannabinoid system as a pivotal neuromodulatory pathway relevant in the pathophysiology of mental disorders.This study was supported by the Spanish Ministry of Economy and Competitiveness (SAF2015-67457-R, MINECO/FEDER), the Plan Estatal de I+D+i 2013-2016, the Instituto de Salud Carlos III-Subdirección General de Evaluación y Fomento de la Investigación, Spanish Ministry of Economy, FEDER (PI13/01529) and the Basque Government (IT616/13). I I-L is a recipient of a Predoctoral Fellowship from the Basque Government. E F-Z is a recipient of a Predoctoral Fellowship from the University of Cantabria. CM is a recipient of a Postdoctoral Marie Skłodowska-Curie Individual Fellowship (H2020-MSCA-IF-2016, ID 747487)

    Decreased GABAA and GABAB receptor functional activity in cannabinoid CB1 receptor knockout mice

    No full text
    The interaction between brain GABAergic and endocannabinoid systems was evaluated by examining the quantitative and functional status of GABAergic receptors in cannabinoid CB1 receptor knockout (CB- 1 /- ) mice. To this aim, GABAA ([ 3H]-Muscimol binding assay), GABAB (baclofen-stimulated [35S]-GTPγS binding assay), GABAAα 1, GABAAα2 and GABAAγ 2 receptors gene expression (real-time reverse transcriptase polymerase chain reaction [PCR]) were carried out in CB1 and wild-type mice (CB1++). [3H]-Muscimol binding assays revealed significant reduction in the density of GABAA receptors in CA2 (30%) and DG (28%) of the hippocampus, thalamus (40%), cingulate (28%) and motor cortex (35%) of CB- 1 /- mice. Functional activity of metabotropic GABAB receptors was measured by evaluating the ability of GABAB agonist baclofen to stimulate [ 35S]-GTPγS binding. The results showed significant reduced [35S]-GTPγS binding in CA1 (61%), CA3 (51%) and DG (60%) of CB1 -/- mice compared with CB1 +/+ mice. Real-time reverse transcriptase PCR was carried out for evaluating gene expression of α1, α2 and γ2 subunits of GABAA receptor in the amygdala. The results showed significant reduced GABAAα1 (50%) and GABA Aα2 (40%) receptor subunits gene expression in the amygdala of CB1 -/- mice. No difference was observed in GABAAγ2 receptor subunit gene expression. This study provides strong evidence of the involvement of CB1 receptors in the control of GABAergic responses mediated by GABAA and GABAB receptors, and suggests a possible role of the endocannabinoid system in the regulation of anxiety-related disorders. © 2011 The Author(s).Peer Reviewe

    Prodynorphin gene deletion increased anxiety-like behaviours, impaired the anxiolytic effect of bromazepam and altered GABAA receptor subunits gene expression in the amygdala

    No full text
    This study evaluated the role of prodynorphin gene in the regulation of anxiety and associated molecular mechanisms. Emotional responses were assessed using the light-dark test, elevated plus maze and social interaction tests in prodynorphin knockout and wild-type mice. Corticotrophin releasing factor and proopiomelanocortin gene expressions in the hypothalamus were evaluated after restraint stress using in situ hybridization. The anxiolytic efficacy of bromazepam and GABA A receptor subunits gene expression in the amygdala were also assessed in both genotypes. The deletion of prodynorphin increased anxiety-like behaviours and proopiomelanocortin gene expression in the arcuate nucleus (two-fold). Moreover, the anxiolytic action of bromazepam was significantly attenuated in the mutant mice. Decreased GABA Aγ 2 and increased GABA Aβ 2 gene expression receptor subunits were found in the amygdala of prodynorphin knockout mice. These results indicate that deletion of prodynorphin gene is associated with increased anxiety-like behaviours, enhanced sensibility response to stress stimuli, reduced anxiolytic efficacy of bromazepam and altered expression of the GABA A receptor subunits.Peer reviewe

    Kappa- and delta-opioid receptor functional activities are increased in the caudate putamen of cannabinoid CB1 receptor knockout mice.

    No full text
    The purpose of this study was to examine the functional interaction between endogenous opioid and cannabinoid receptor systems in the caudate putamen and nucleus accumbens. We therefore examined by autoradiography the functional activity and density of micro-, kappa- and delta-opioid receptors in both brain regions of cannabinoid CB1 receptor knockout mice. Functional activity was estimated by measuring agonist-stimulated [35S]GTPgammaS binding. Results showed that deletion of the CB1 cannabinoid receptor markedly increased kappa-opioid (50%) and delta-opioid (42%) receptor activities whereas no differences were found in micro-opioid receptor in the caudate putamen. In contrast, binding autoradiography showed a similar density of micro-, kappa- and delta-opioid receptors between mutant and wild-type mice. No differences were found in densities or activities of micro-, kappa- and delta-opioid receptors between mutant and wild-type mice in the nucleus accumbens. Taken together, our results revealed that deletion of CB1 cannabinoid receptors produced a pronounced increase in the activity of kappa- and delta-opioid receptors in the caudate putamen. This endogenous interaction between opioid and cannabinoid receptors may be relevant to further understand a variety of neuroadaptative processes involving the participation of opioid receptors, such as motor behaviour, emotional responses and drug dependence.Comparative StudyJournal ArticleFLWINinfo:eu-repo/semantics/publishe
    corecore