76 research outputs found

    Elevated carbon dioxide and ozone alter productivity and ecosystem carbon content in northern temperate forests

    Full text link
    Three young northern temperate forest communities in the north‐central United States were exposed to factorial combinations of elevated carbon dioxide ( CO 2 ) and tropospheric ozone (O 3 ) for 11 years. Here, we report results from an extensive sampling of plant biomass and soil conducted at the conclusion of the experiment that enabled us to estimate ecosystem carbon (C) content and cumulative net primary productivity ( NPP ). Elevated CO 2 enhanced ecosystem C content by 11%, whereas elevated O 3 decreased ecosystem C content by 9%. There was little variation in treatment effects on C content across communities and no meaningful interactions between CO 2 and O 3 . Treatment effects on ecosystem C content resulted primarily from changes in the near‐surface mineral soil and tree C, particularly differences in woody tissues. Excluding the mineral soil, cumulative NPP was a strong predictor of ecosystem C content ( r 2  = 0.96). Elevated CO 2 enhanced cumulative NPP by 39%, a consequence of a 28% increase in canopy nitrogen (N) content (g N m −2 ) and a 28% increase in N productivity ( NPP /canopy N). In contrast, elevated O 3 lowered NPP by 10% because of a 21% decrease in canopy N, but did not impact N productivity. Consequently, as the marginal impact of canopy N on NPP (∆ NPP /∆N) decreased through time with further canopy development, the O 3 effect on NPP dissipated. Within the mineral soil, there was less C in the top 0.1 m of soil under elevated O 3 and less soil C from 0.1 to 0.2 m in depth under elevated CO 2 . Overall, these results suggest that elevated CO 2 may create a sustained increase in NPP , whereas the long‐term effect of elevated O 3 on NPP will be smaller than expected. However, changes in soil C are not well‐understood and limit our ability to predict changes in ecosystem C content.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/108065/1/gcb12564.pd

    Elevated carbon dioxide and ozone alter productivity and ecosystem carbon content in northern temperate forests

    Full text link
    Three young northern temperate forest communities in the north-central United States were exposed to factorial combinations of elevated carbon dioxide (CO2) and tropospheric ozone (O3) for 11 years. Here, we report results from an extensive sampling of plant biomass and soil conducted at the conclusion of the experiment that enabled us to estimate ecosystem carbon (C) content and cumulative net primary productivity (NPP). Elevated CO2 enhanced ecosystem C content by 11%, whereas elevated O3 decreased ecosystem C content by 9%. There was little variation in treatment effects on C content across communities and no meaningful interactions between CO2 and O3. Treatment effects on ecosystem C content resulted primarily from changes in the near-surface mineral soil and tree C, particularly differences in woody tissues. Excluding the mineral soil, cumulative NPP was a strong predictor of ecosystem C content (r2 = 0.96). Elevated CO2 enhanced cumulative NPP by 39%, a consequence of a 28% increase in canopy nitrogen (N) content (g N m−2) and a 28% increase in N productivity (NPP/canopy N). In contrast, elevated O3 lowered NPP by 10% because of a 21% decrease in canopy N, but did not impact N productivity. Consequently, as the marginal impact of canopy N on NPP (ΔNPP/ΔN) decreased through time with further canopy development, the O3 effect on NPP dissipated. Within the mineral soil, there was less C in the top 0.1 m of soil under elevated O3 and less soil C from 0.1 to 0.2 m in depth under elevated CO2. Overall, these results suggest that elevated CO2 may create a sustained increase in NPP, whereas the long-term effect of elevated O3 on NPP will be smaller than expected. However, changes in soil C are not well-understood and limit our ability to predict changes in ecosystem C content

    Measurement of the scintillation time spectra and pulse-shape discrimination of low-energy beta and nuclear recoils in liquid argon with DEAP-1

    Get PDF
    The DEAP-1 low-background liquid argon detector was used to measure scintillation pulse shapes of electron and nuclear recoil events and to demonstrate the feasibility of pulse-shape discrimination (PSD) down to an electron-equivalent energy of 20 keV. In the surface dataset using a triple-coincidence tag we found the fraction of beta events that are misidentified as nuclear recoils to be <1.4×107<1.4\times 10^{-7} (90% C.L.) for energies between 43-86 keVee and for a nuclear recoil acceptance of at least 90%, with 4% systematic uncertainty on the absolute energy scale. The discrimination measurement on surface was limited by nuclear recoils induced by cosmic-ray generated neutrons. This was improved by moving the detector to the SNOLAB underground laboratory, where the reduced background rate allowed the same measurement with only a double-coincidence tag. The combined data set contains 1.23×1081.23\times10^8 events. One of those, in the underground data set, is in the nuclear-recoil region of interest. Taking into account the expected background of 0.48 events coming from random pileup, the resulting upper limit on the electronic recoil contamination is <2.7×108<2.7\times10^{-8} (90% C.L.) between 44-89 keVee and for a nuclear recoil acceptance of at least 90%, with 6% systematic uncertainty on the absolute energy scale. We developed a general mathematical framework to describe PSD parameter distributions and used it to build an analytical model of the distributions observed in DEAP-1. Using this model, we project a misidentification fraction of approx. 101010^{-10} for an electron-equivalent energy threshold of 15 keV for a detector with 8 PE/keVee light yield. This reduction enables a search for spin-independent scattering of WIMPs from 1000 kg of liquid argon with a WIMP-nucleon cross-section sensitivity of 104610^{-46} cm2^2, assuming negligible contribution from nuclear recoil backgrounds.Comment: Accepted for publication in Astroparticle Physic

    Characteristics of free air carbon dioxide enrichment of a northern temperate mature forest

    Get PDF
    Tausz, M ORCiD: 0000-0001-8205-8561In 2017, the Birmingham Institute of Forest Research (BIFoR) began to conduct Free Air Carbon Dioxide Enrichment (FACE) within a mature broadleaf deciduous forest situated in the United Kingdom. BIFoR FACE employs large scale infrastructure, in the form of lattice towers, forming 'arrays' which encircle a forest plot of ~30 m diameter. BIFoR FACE consists of three treatment arrays to elevate local CO2 concentrations (e[CO2 ]) by +150 μmol mol-1 . In practice, acceptable operational enrichment (ambient [CO2 ] + e[CO2 ]) is ± 20% of the set-point 1-minute average target. There are a further three arrays that replicate the infrastructure and deliver ambient air as paired controls for the treatment arrays. For the first growing season with e[CO2 ] (April to November 2017), [CO2 ] measurements in treatment and control arrays show that the target concentration was successfully delivered, i.e.: +147 ± 21 μmol mol-1 (mean ± SD) or 98 ± 14% of set-point enrichment target. e[CO2 ] treatment was accomplished for 97.7% of the scheduled operation time, with the remaining time lost due to engineering faults (0.6% of the time), CO2 supply issues (0.6%), or adverse weather conditions (1.1%). CO2 demand in the facility was driven predominantly by wind speed and the formation of the deciduous canopy. Deviations greater than 10% from the ambient baseline CO2 occurred  80 μmol mol-1 (i.e., > 53% of the treatment increment) into control arrays accounted for < 0.1% of the enrichment period. The median [CO2 ] values in reconstructed 3-dimensional [CO2 ] fields show enrichment somewhat lower than the target but still well above ambient. The data presented here provide confidence in the facility setup and can be used to guide future next-generation forest FACE facilities built into tall and complex forest stands. This article is protected by copyright. All rights reserved

    Not Perfect, but Better: Primary Care Providers’ Experiences with Electronic Referrals in a Safety Net Health System

    Get PDF
    BackgroundElectronic referrals can improve access to subspecialty care in safety net settings. In January 2007, San Francisco General Hospital (SFGH) launched an electronic referral portal that incorporated subspecialist triage, iterative communication with referring providers, and existing electronic health record data to improve access to subspecialty care.ObjectiveWe surveyed primary care providers (PCPs) to assess the impact of electronic referrals on workflow and clinical care.DesignWe administered an 18-item, web-based questionnaire to all 368 PCPs who had the option of referring to SFGH.MeasurementsWe asked participants to rate time spent submitting a referral, guidance of workup, wait times, and change in overall clinical care compared to prior referral methods using 5-point Likert scales. We used multivariate logistic regression to identify variables associated with perceived improvement in overall clinical care.ResultsTwo hundred ninety-eight PCPs (81.0%) from 24 clinics participated. Over half (55.4%) worked at hospital-based clinics, 27.9% at county-funded community clinics, and 17.1% at non-county-funded community clinics. Most (71.9%) reported that electronic referrals had improved overall clinical care. Providers from non-county-funded clinics (AOR 0.40, 95% CI 0.14-0.79) and those who spent &gt; or =6 min submitting an electronic referral (AOR 0.33, 95%CI 0.18-0.61) were significantly less likely than other participants to report that electronic referrals had improved clinical care.ConclusionsPCPs felt electronic referrals improved health-care access and quality; those who reported a negative impact on workflow were less likely to agree. While electronic referrals hold promise as a tool to improve clinical care, their impact on workflow should be considered

    Reliability and validity of two fitness tracker devices in the laboratory and home environment for older community-dwelling people

    Get PDF
    © 2018 The Author(s). Background: Two-thirds of older Australians are sedentary. Fitness trackers have been popular with younger people and may encourage older adults to become more active. Older adults may have different gait patterns and as such it is important to establish whether fitness trackers are valid and reliable for this population. The aim of the study was to test the reliability and validity of two fitness trackers (Fitbit Flex and ChargeHR) by step count when worn by older adults. Reliability and validity were tested in two conditions: 1) in the laboratory using a two-minute-walk-test (2MWT) and 2) in a free-living environment. Methods: Two 2MWTs were completed while wearing the fitness trackers. Participants were videoed during each test. Participants were then given one fitness tracker and a GENEactiv accelerometer to wear at home for 14-days. Results: Thirty-one participants completed two 2MWTs and 30 completed the free-living procedure. Intra Class Correlation's of the fitness trackers with direct observation of steps (criterion validity) was high (ICC:0.86,95%CI:0.76,0.93). However, both fitness trackers underestimated steps. Excellent test-retest reliability (ICC = 0.75) was found between the two 2MWTs for each device, particularly the ChargeHR devices. Good strength of agreement was found for total distance and steps (fitness tracker) and moderate-to-vigorous physical activity (GENEactiv) for the free-living environment (Spearman Rho's 0.78 and 0.74 respectively). Conclusion: Reliability and validity of the Flex and ChargeHR when worn by older adults is good, however both devices underestimated step count within the laboratory environment. These fitness trackers appear suitable for consumer use and promoting physical activity for older adults

    Standards recommendations for the Earth BioGenome Project

    Get PDF
    A global international initiative, such as the Earth BioGenome Project (EBP), requires both agreement and coordination on standards to ensure that the collective effort generates rapid progress toward its goals. To this end, the EBP initiated five technical standards committees comprising volunteer members from the global genomics scientific community: Sample Collection and Processing, Sequencing and Assembly, Annotation, Analysis, and IT and Informatics. The current versions of the resulting standards documents are available on the EBP website, with the recognition that opportunities, technologies, and challenges may improve or change in the future, requiring flexibility for the EBP to meet its goals. Here, we describe some highlights from the proposed standards, and areas where additional challenges will need to be met

    Experiencing visual impairment in a lifetime home: an interpretative phenomenological inquiry

    Get PDF
    Lifetime home standards (LTHS) are a set of standards aimed at making homes more accessible. Previous research, however, indicates that LTHS do not adequately meet the needs of those with sensory impairments. Now, with visual impairment set to increase globally and acknowledging the recognised link between quality of dwelling and wellbeing, this article aims to examine the experiences of visually impaired people living in lifetime homes. The objectives are to investigate existing lifetime homes and to identify whether LTHS meet occupants’ needs. Qualitative semi-structured interviews were carried out with six visually impaired people living in homes designed to LTHS in Northern Ireland. Collected data was analysed using interpretative phenomenological analysis identifying three super-ordinate themes: (1) living with visual impairment; (2) design considerations and (3) coping strategies. A core theme of balance between psychological and physical needs emerged through interconnection of super-ordinate themes. Although there are benefits to living in lifetime homes, negative aspects are also apparent with occupants employing several coping strategies to overcome difficulties. Whilst residents experience negative emotions following visual impairment diagnoses, results suggest that occupants still regard their homes as key places of security and comfort in addition to then highlighting the need for greater consideration of specific individual needs within general guidelines

    A second planet transiting LTT 1445A and a determination of the masses of both worlds

    Get PDF
    K.H. acknowledges support from STFC grant ST/R000824/1.LTT 1445 is a hierarchical triple M-dwarf star system located at a distance of 6.86 pc. The primary star LTT 1445A (0.257 M⊙) is known to host the transiting planet LTT 1445Ab with an orbital period of 5.36 days, making it the second-closest known transiting exoplanet system, and the closest one for which the host is an M dwarf. Using Transiting Exoplanet Survey Satellite data, we present the discovery of a second planet in the LTT 1445 system, with an orbital period of 3.12 days. We combine radial-velocity measurements obtained from the five spectrographs, Echelle Spectrograph for Rocky Exoplanets and Stable Spectroscopic Observations, High Accuracy Radial Velocity Planet Searcher, High-Resolution Echelle Spectrometer, MAROON-X, and Planet Finder Spectrograph to establish that the new world also orbits LTT 1445A. We determine the mass and radius of LTT 1445Ab to be 2.87 ± 0.25 M⊕ and 1.304-0.060+0.067 R⊕, consistent with an Earth-like composition. For the newly discovered LTT 1445Ac, we measure a mass of 1.54-0.19+0.20 M⊕ and a minimum radius of 1.15 R⊕, but we cannot determine the radius directly as the signal-to-noise ratio of our light curve permits both grazing and nongrazing configurations. Using MEarth photometry and ground-based spectroscopy, we establish that star C (0.161 M⊙) is likely the source of the 1.4 day rotation period, and star B (0.215 M⊙) has a likely rotation period of 6.7 days. We estimate a probable rotation period of 85 days for LTT 1445A. Thus, this triple M-dwarf system appears to be in a special evolutionary stage where the most massive M dwarf has spun down, the intermediate mass M dwarf is in the process of spinning down, while the least massive stellar component has not yet begun to spin down.Publisher PDFPeer reviewe

    The First Post-Kepler Brightness Dips of KIC 8462852

    Get PDF
    We present a photometric detection of the first brightness dips of the unique variable star KIC 8462852 since the end of the Kepler space mission in 2013 May. Our regular photometric surveillance started in October 2015, and a sequence of dipping began in 2017 May continuing on through the end of 2017, when the star was no longer visible from Earth. We distinguish four main 1-2.5% dips, named "Elsie," "Celeste," "Skara Brae," and "Angkor", which persist on timescales from several days to weeks. Our main results so far are: (i) there are no apparent changes of the stellar spectrum or polarization during the dips; (ii) the multiband photometry of the dips shows differential reddening favoring non-grey extinction. Therefore, our data are inconsistent with dip models that invoke optically thick material, but rather they are in-line with predictions for an occulter consisting primarily of ordinary dust, where much of the material must be optically thin with a size scale <<1um, and may also be consistent with models invoking variations intrinsic to the stellar photosphere. Notably, our data do not place constraints on the color of the longer-term "secular" dimming, which may be caused by independent processes, or probe different regimes of a single process
    corecore