1,151 research outputs found
Kapsula: Crisis, Part 3 of 3
Over the past couple of months KAPSULA has sent subscribers two separate releases dealing with CRISIS. We’ve looked at crisis in art criticism, moments of individual or personal crisis, the crisis of (re)presentation and now, for our final crisis-themed iteration, we turn to focus on our chosen domain: the digital and technological. Considering that many of the most widely publicized and discussed crises have been based in this realm, it may seem surprising that we’ve taken this long. Over the last couple of years the digital realm, and surveillance thereof, has dominated news stories: the Snowden/NSA/PRISM trinity and the Assange/Wikileaks duo chief among them. We’re not going to be investigating surveillance, though—after all, we’ve already infiltrated your inbox. Instead, the essays are more formal in their scope: exploring the shifting implications of the cyborg figure, and the ramifications of four D cinema.
In early (feminist) discussions the cyborg was presented, by Donna Haraway and other theorists, as a potential figure of resistance and resilience—a marker of difference and defiance. It offered, as Tyler Morgenstern notes, “a conception of the body as negotiable and assembled.” Yet, while wearable technologies increasingly make the merging of human and machine an everyday reality, Morgenstern notes that the form of these prosthetic extensions overwhelming veers towards
the invisible and the seamless. This aesthetic sensibility (or, perhaps lack of a sensibility) extends
beyond wearable technologies and into broader conceptions of networks “of all sorts
(financial, military, activist, terrorist).” They aim for erasure. Morgenstern hones in on this
increasing reality, and seeks to understand its ramifications beyond the realm of the formal.
What does this erasure entail? How can it be resisted?
Similarly circling within the realm of recent expansions in corporate technology, Grant Leuning
delves into the topic of four D cinemas, which aim to enhance the movie-going experience
through ‘augmented reality’ à la moving viewers’ chairs, spraying them with water, blasting
them with air and so on. With Leuning, as with Morgenstern, we are in Laura Mulvey’s company.
But the association traced by Mulvey and other film theorists is threatened—we’ve cut
the cord and been expelled from the darkened womb-like state of the theatre. Our comfortable
association with the protagonist character has been disrupted, denied. Instead, our association
has fragmented into each and every element of the highly manufactured environment.
Leuning explains (with echoes of Oppenheimer): “I am become the punch, the robot, the seaspray,
the fight as such, the substance of the film itself.” As with Morgenstern, Leuning searches
for sites of plurality and alterity, even at the centre of “gratuitous capitalist innovation.”
Despite their contrasting topics both authors are congruent in an emphasis on making obvious
and, to a lesser extent, making physical (perhaps even material). In Leuning, the varied effects
of the four D cinema make countless environmental details obvious, thereby altering the
terms of the viewer’s gaze and identification. In Morgenstern, this making obvious is found
in the work of the artists he champions. They use clunky, outdated technology that makes no
attempt at seamless integration, thus embracing incoherence, glitch and the in-between.
In this spirit, then, while reading the issue there should be a few things amiss with the document.
(No need to look hard, it will be obvious.) Text will be garbled, overlaid on top of itself
until it becomes incomprehensible. Be patient; we want your reading to be disrupted, your
attention to be redirected and diverted. Easily achieved, clear reading might not always be the
best reading. Perhaps, if you haven’t already, you will gain some appetite for the imperfect, yet
impassioned
Optimization of canopy conductance models from concurrent measurements of sap flow and stem water potential on Drooping Sheoak in South Australia
This project is supported by National Centre for Groundwater Research and Training (NCGRT, Australia). The first author is supported by China Scholarship Council and NCGRT for his PhD study at Flinders University of South Australia. Xiang Xu and Yunhui Guo provided assistance in the field. Constructive comments and suggestion from three anonymous reviewers significantly improve the manuscript. This article also appears in: Patterns in Soil-Vegetation-Atmosphere Systems: Monitoring, Modelling and Data Assimilation.Peer reviewedPublisher PD
Ship-based measurement of air-sea CO2exchange by eddy covariance
A system for the shipboard measurement of air-sea CO2 fluxes by eddy covariance was developed and tested. The system was designed to reduce two major sources of experimental uncertainty previously reported. First, the correction for in situ water vapor fluctuations (the “Webb” correction) was reduced by 97% by drying the air sample stream. Second, motion sensitivity of the gas analyzer was reduced by using an open-path type sensor that was converted to a closed-path configuration to facilitate drying of the air stream. High-quality CO2 fluxes were obtained during 429 14 min flux intervals during two cruises in the North Atlantic. The results suggest that the gas analyzer resolved atmospheric CO2 fluctuations well below its RMS noise level. This noise was uncorrelated with the vertical wind and therefore filtered out by the flux calculation. Using climatological data, we estimate that the techniques reported here could enable high-quality measurements of air-sea CO2 flux over much of the world oceans
Recommended from our members
Frost and leaf-size gradients in forests: global patterns and experimental evidence
Explanations of leaf size variation commonly focus on water availability, yet leaf size also varies with latitude and elevation in environments where water is not strongly limiting. We provide the first conclusive test of a prediction of leaf energy balance theory that may explain this pattern: large leaves are more vulnerable to night-time chilling, because their thick boundary layers impede convective exchange with the surrounding air.
Seedlings of New Zealand evergreens spanning 12-fold variation in leaf width were exposed to clear night skies, and leaf temperatures measured with thermocouples. We then used a global dataset to assess several climate variables as predictors of leaf size in forest assemblages.
Leaf-minus-air temperature was strongly correlated with leaf width, ranging from -0.9 to -3.2 C in the smallest- and largest-leaved species, respectively. MAT and frost-free period were good predictors of evergreen angiosperm leaf size in forest assemblages, but no climate variable predicted deciduous leaf size.
Although winter deciduousness makes large leaves possible in strongly seasonal climates, large-leaved evergreens are largely confined to frost-free climates because of their susceptibility to radiative cooling. Evergreen leaf size data can therefore be used to enhance vegetation models, and to infer palaeotemperatures from fossil leaf assemblages
Comparison of different stomatal conductance algorithms for ozone flux modelling
A multiplicative and a semi-mechanistic, BWB-type [Ball, J.T., Woodrow, I.E., Berry, J.A., 1987. A model predicting stomatalconductance and its contribution to the control of photosynthesis under different environmental conditions. In: Biggens, J. (Ed.), Progress in Photosynthesis Research, vol. IV. Martinus Nijhoff, Dordrecht, pp. 221–224.] algorithm for calculating stomatalconductance (gs) at the leaf level have been parameterised for two crop and two tree species to test their use in regional scale ozone deposition modelling. The algorithms were tested against measured, site-specific data for durum wheat, grapevine, beech and birch of different European provenances. A direct comparison of both algorithms showed a similar performance in predicting hourly means and daily time-courses of gs, whereas the multiplicative algorithm outperformed the BWB-type algorithm in modelling seasonal time-courses due to the inclusion of a phenology function. The re-parameterisation of the algorithms for local conditions in order to validate ozone deposition modelling on a European scale reveals the higher input requirements of the BWB-type algorithm as compared to the multiplicative algorithm because of the need of the former to model net photosynthesis (An
An introduction to the Australian and New Zealand flux tower network - OzFlux
Published: 31 October 2016OzFlux is the regional Australian and New Zealand flux tower network that aims to provide a continental-scale national research facility to monitor and assess trends, and improve predictions, of Australia's terrestrial biosphere and climate. This paper describes the evolution, design, and current status of OzFlux as well as provides an overview of data processing. We analyse measurements from all sites within the Australian portion of the OzFlux network and two sites from New Zealand. The response of the Australian biomes to climate was largely consistent with global studies except that Australian systems had a lower ecosystem water-use efficiency. Australian semi-arid/arid ecosystems are important because of their huge extent (70 %) and they have evolved with common moisture limitations. We also found that Australian ecosystems had a similar radiation-use efficiency per unit leaf area compared to global values that indicates a convergence toward a similar biochemical efficiency. The two New Zealand sites represented extremes in productivity for a moist temperate climate zone, with the grazed dairy farm site having the highest GPP of any OzFlux site (2620 gC m⁻² yr⁻¹) and the natural raised peat bog site having a very low GPP (820 gC m⁻² yr⁻¹). The paper discusses the utility of the flux data and the synergies between flux, remote sensing, and modelling. Lastly, the paper looks ahead at the future direction of the network and concludes that there has been a substantial contribution by OzFlux, and considerable opportunities remain to further advance our understanding of ecosystem response to disturbances, including drought, fire, land-use and land-cover change, land management, and climate change, which are relevant both nationally and internationally. It is suggested that a synergistic approach is required to address all of the spatial, ecological, human, and cultural challenges of managing the delicately balanced ecosystems in Australasia.Jason Beringer ... Wayne Meyer ... et al
CO2 soil flux baseline at the technological development plant for CO2 injection at Hontomin (Burgos, Spain)
From the end of 2013 and during the following two years, 20 kt of CO2sc are planned to be injected in a saline reservoir (1500 m depth) at the Hontomín site (NE Spain). The target aquifers are Lower Jurassic limestone formations which are sealed by Lower Cretaceous clay units at the Hontomín site (NE Spain). The injection of CO2 is part of the activities committed in the Technology Development phase of the EC-funded OXYCFB300 project (European Energy Program for Recovery – EEPR, http://www.compostillaproject.eu), which include CO2 injection strategies, risk assessment, and testing and validating monitoring methodologies and techniques.
Among the monitoring works, the project is intended to prove that present-day technology is able to monitor the evolution of injected CO2 in the reservoir and to detect potential leakage. One of the techniques is the measurement of CO2 flux at the soil–atmosphere interface, which includes campaigns before, during and after the injection operations.
In this work soil CO2 flux measurements in the vicinity of oil borehole, drilled in the eighties and named H-1 to H-4, and injection and monitoring wells were performed using an accumulation chamber equipped with an IR sensor. Seven surveys were carried out from November 2009 to summer 2011. More than 4000 measurements were used to determine the baseline flux of CO2 and its seasonal variations.
The measured values were low (from 5 to 13 g m−2 day−1) and few outliers were identified, mainly located close to the H-2 oil well. Nevertheless, these values cannot be associated to a deep source of CO2, being more likely related to biological processes, i.e. soil respiration. No anomalies were recognized close to the deep fault system (Ubierna Fault) detected by geophysical investigations. There, the CO2 flux is indeed as low as other measurement stations. CO2 fluxes appear to be controlled by the biological activity since the lowest values were recorded during autumn-winter seasons and they tend to increase in warm periods. Two reference CO2 flux values (UCL50 of 5 g m−2 d−1 for non-ploughed areas in autumn–winter seasons and 3.5 and 12 g m−2 d−1 for in ploughed and non-ploughed areas, respectively, in spring–summer time, and UCL99 of 26 g m−2 d−1 for autumn–winter in not-ploughed areas and 34 and 42 g m−2 d−1 for spring–summer in ploughed and not-ploughed areas, respectively) were calculated. Fluxes higher than these reference values could be indicative of possible leakage during the operational and post-closure stages of the storage project
Decreased photosynthesis in the erect panicle 3 (ep3) mutant of rice is associated with reduced stomatal conductance and attenuated guard cell development
The ERECT PANICLE 3 gene of rice encodes a peptide that exhibits more than 50% sequence identity with the Arabidopsis F-box protein HAWAIIAN SKIRT (HWS). Ectopic expression of the Os02g15950 coding sequence, driven by the HWS (At3g61950) promoter, rescued the hws-1 flower phenotype in Arabidopsis confirming that EP3 is a functional orthologue of HWS. In addition to displaying an erect inflorescence phenotype, loss-of-function mutants of Os02g15950 exhibited a decrease in leaf photosynthetic capacity and stomatal conductance. Analysis of a range of physiological and anatomical features related to leaf photosynthesis revealed no alteration in Rubisco content and no notable changes in mesophyll size or arrangement. However, both ep3 mutant plants and transgenic lines that have a T-DNA insertion within the Os02g15950 (EP3) gene exhibit smaller stomatal guard cells compared with their wild-type controls. This anatomical characteristic may account for the observed decrease in leaf photosynthesis and provides evidence that EP3 plays a role in regulating stomatal guard cell development
Formation and characteristics of ions and charged aerosol particles in a native Australian Eucalypt forest
International audienceBiogenic aerosol formation is likely to contribute significantly to the global aerosol load. In recent years, new-particle formation has been observed in various ecosystems around the world but hardly any measurements have taken place in the terrestrial Southern Hemisphere. Here, we report the first results of atmospheric ion and charged particle concentrations as well as of new-particle formation in a Eucalypt forest in Tumbarumba, South-East Australia, from July 2005 to October 2006. The measurements were carried out with an Air Ion Spectrometer (AIS) with a size range from 0.34 to 40 nm. The Eucalypt forest was a very strong source of new aerosol particles. Daytime aerosol formation took place on 52% of days with acceptable data, which is 2?3 times as often as in the Nordic boreal zone. Average growth rates for negative/positive 1.5?3 nm particles during these formation events were 2.89/2.68 nmh?1, respectively; for 3-7 nm particles 4.26/4.03, and for 7?20 nm particles 8.90/7.58 nmh?1, respectively. The growth rates for large ions were highest when the air was coming from the native forest which suggests that the Eucalypts were a strong source of condensable vapours. Average concentrations of cluster ions (0.34?1.8 nm) were 2400/1700 cm?3 for negative/positive ions, very high compared to most other measurements around the world. One reason behind these high concentrations could be the strong radon efflux from the soils around the Tumbarumba field site. Furthermore, comparison between night-time and daytime concentrations supported the view that cluster ions are produced close to the surface within the boundary layer also at night but that large ions are mostly produced in daytime. Finally, a previously unreported phenomenon, nocturnal aerosol formation, appeared in 32% of the analysed nights but was clustered almost entirely within six months from summer to autumn in 2006. From January to May, nocturnal formation was 2.5 times as frequent as daytime formation. Therefore, it appears that in summer and autumn, nocturnal production was the major mechanism for aerosol formation in Tumbarumba
- …
