42 research outputs found

    Annual, seasonal, and diel surface energy partitioning in the semiarid Sand Hills of Nebraska, USA

    Get PDF
    Study Region: The Nebraska Sand Hills consisting of four major land cover types: (1) lakes and wetlands (∼5% for both), (2) subirrigated meadows (∼10%), (3) dry valleys (∼20%), and (4) upland dunes (∼65%). Study Focus: Examination of surface energy and water balances on multiple temporal scales with primary focus on latent heat flux (λE), and evapotranspiration (ET), to gain a better understanding of the annual, seasonal, and diel properties of surface energy partitioning among different Sand Hills ecosystems to improve regional water resource management. New Hydrological Insights for the Region: Based on surface energy and water balance measurements using Bowen ratio energy balance systems at three locations during 2004, we find a strong spatial gradient between sites in latent (λE) and sensible (H) heat flux due to differences in topography, soils, and plant community composition on all timescales. Seasonally, all land covers show the greatest λE in summer. Our results show that subirrigated meadows, dry valleys, and upland dunes allocate roughly 81%, 50%, and 41% of available energy to λE, respectively, during the growing season. The subirrigated meadow was the only cover type where cumulative annual ET surpassed cumulative annual precipitation (i.e. net loss of water to the atmosphere). Therefore, the dry valleys and upland dunes are where net groundwater recharge to the High Plains Aquifer is occurring

    Lake-size dependency of wind shear and convection as controls on gas exchange

    Get PDF
    High-frequency physical observations from 40 temperate lakes were used to examine the relative contributions of wind shear (u*) and convection (w*) to turbulence in the surface mixed layer. Seasonal patterns of u* and w* were dissimilar; u* was often highest in the spring, while w * increased throughout the summer to a maximum in early fall. Convection was a larger mixed-layer turbulence source than wind shear (u */w*-1 for lakes* and w* differ in temporal pattern and magnitude across lakes, both convection and wind shear should be considered in future formulations of lake-air gas exchange, especially for small lakes. © 2012 by the American Geophysical Union.Jordan S. Read, David P. Hamilton, Ankur R. Desai, Kevin C. Rose, Sally MacIntyre, John D. Lenters, Robyn L. Smyth, Paul C. Hanson, Jonathan J. Cole, Peter A. Staehr, James A. Rusak, Donald C. Pierson, Justin D. Brookes, Alo Laas, and Chin H. W

    Investigation of 2 Models to Set and Evaluate Quality Targets for Hb A1c: Biological Variation and Sigma-Metrics

    Get PDF
    BACKGROUND: A major objective of the IFCC Task Force on Implementation of HbA1c Standardization is to develop a model to define quality targets for glycated hemoglobin (Hb A1c). METHODS: Two generic models, biological variation and sigma-metrics, are investigated. We selected variables in the models for Hb A1c and used data of external quality assurance/proficiency testing programs to evaluate the suitability of the models to set and evaluate quality targets within and between laboratories. RESULTS: In the biological variation model, 48% of individual laboratories and none of the 26 instrument groups met the minimum performance criterion. In the sigma-metrics model, with a total allowable error (TAE) set at 5 mmol/mol (0.46% NGSP), 77% of the individual laboratories and 12 of 26 instrument groups met the 2σ criterion. CONCLUSIONS: The biological variation and sigma-metrics models were demonstrated to be suitable for setting and evaluating quality targets within and between laboratories. The sigma-metrics model is more flexible, as both the TAE and the risk of failure can be adjusted to the situation—for example, requirements related to diagnosis/monitoring or international authorities. With the aim of reaching (inter)national consensus on advice regarding quality targets for Hb A1c, the Task Force suggests the sigma-metrics model as the model of choice, with default values of 5 mmol/mol (0.46%) for TAE and risk levels of 2σ and 4σ for routine laboratories and laboratories performing clinical trials, respectively. These goals should serve as a starting point for discussion with international stakeholders in the field of diabetes

    A global database of lake surface temperatures collected by in situ and satellite methods from 1985–2009

    Full text link
    Global environmental change has influenced lake surface temperatures, a key driver of ecosystem structure and function. Recent studies have suggested significant warming of water temperatures in individual lakes across many different regions around the world. However, the spatial and temporal coherence associated with the magnitude of these trends remains unclear. Thus, a global data set of water temperature is required to understand and synthesize global, long-term trends in surface water temperatures of inland bodies of water. We assembled a database of summer lake surface temperatures for 291 lakes collected in situ and/or by satellites for the period 1985–2009. In addition, corresponding climatic drivers (air temperatures, solar radiation, and cloud cover) and geomorphometric characteristics (latitude, longitude, elevation, lake surface area, maximum depth, mean depth, and volume) that influence lake surface temperatures were compiled for each lake. This unique dataset offers an invaluable baseline perspective on global-scale lake thermal conditions as environmental change continues

    EurA1c: the European HbA1c Trial to Investigate the Performance of HbA1c Assays in 2166 Laboratories across 17 Countries and 24 Manufacturers by Use of the IFCC Model for Quality Targets

    Get PDF
    Background: A major objective of the IFCC Committee on Education and Use of Biomarkers in Diabetes is to generate awareness and improvement of HbA1c assays through evaluation of the performance by countries and manufacturers. Methods: Fresh whole blood and lyophilized hemolysate specimens manufactured from the same pool were used by 17 external quality assessment organizers to evaluate analytical performance of 2166 laboratories. Results were evaluated per country, per manufacturer, and per manufacturer and country combined according to criteria of the IFCC model for quality targets. Results: At the country level with fresh whole blood specimens, 6 countries met the IFCC criterion, 2 did not, and 2 were borderline. With lyophilized hemolysates, 5 countries met the criterion, 2 did not, and 3 were borderline. At the manufacturer level using fresh whole blood specimens, 13 manufacturers met the criterion, 8 did not, and 3 were borderline. Using lyophilized hemolysates, 7 manufacturers met the criterion, 6 did not, and 3 were borderline. In both country and manufacturer groups, the major contribution to total error derived from between-laboratory variation. There were no substantial differences in performance between groups using fresh whole blood or lyophilized hemolysate samples. Conclusions: The state of the art is that 1 of 20 laboratories does not meet the IFCC criterion, but there are substantial differences between country and between manufacturer groups. Efforts to further improve quality should focus on reducing between-laboratory variation. With some limitations, fresh whole blood and well-defined lyophilized specimens are suitable for purpose

    Latitude and lake size are important predictors of over-lake atmospheric stability: Atmospheric Stability Above Lakes

    Get PDF
    Turbulent fluxes across the air‐water interface are integral to determining lake heat budgets, evaporation, and carbon emissions from lakes. The stability of the atmospheric boundary layer (ABL) influences the exchange of turbulent energy. We explore the differences in over‐lake ABL stability using data from 39 globally distributed lakes. The frequency of unstable ABL conditions varied between lakes from 71 to 100% of the time, with average air temperatures typically several degrees below the average lake surface temperature. This difference increased with decreasing latitude, resulting in a more frequently unstable ABL and a more efficient energy transfer to and from the atmosphere, toward the tropics. In addition, during summer the frequency of unstable ABL conditions decreased with increasing lake surface area. The dependency of ABL stability on latitude and lake size has implications for heat loss and carbon fluxes from lakes, the hydrologic cycle, and climate change effects

    Rapid and highly variable warming of lake surface waters around the globe

    Get PDF
    In this first worldwide synthesis of in situ and satellite-derived lake data, we find that lake summer surface water temperatures rose rapidly (global mean = 0.34°C decade-1) between 1985 and 2009. Our analyses show that surface water warming rates are dependent on combinations of climate and local characteristics, rather than just lake location, leading to the counterintuitive result that regional consistency in lake warming is the exception, rather than the rule. The most rapidly warming lakes are widely geographically distributed, and their warming is associated with interactions among different climatic factors - from seasonally ice-covered lakes in areas where temperature and solar radiation are increasing while cloud cover is diminishing (0.72°C decade-1) to ice-free lakes experiencing increases in air temperature and solar radiation (0.53°C decade-1). The pervasive and rapid warming observed here signals the urgent need to incorporate climate impacts into vulnerability assessments and adaptation efforts for lakes

    The Importance of Spring and Autumn Atmospheric Conditions for the Evaporation Regime of Lake Superior

    Get PDF
    Feedbacks between ice extent and evaporation have long been suspected to be important for Lake Superior evaporation because it is during autumn and winter when latent heat fluxes are highest. Recent direct measurements of evaporation made at the Stannard Rock Lighthouse have provided new information on the physical controls on Lake Superior evaporation, in particular that evaporation can react within hours to days to a change in synoptic conditions. However, the large heat capacity of the lake creates a strong seasonal cycle of energy storage and release. There is a complex interaction among heat storage, evaporation, and ice cover that is highly dependent on atmospheric conditions in the spring and autumn ‘‘shoulder seasons.’’ Small changes in conditions in November and March caused by synoptic-scale events can have profound impacts on annual evaporation, the extent of ice cover, and the length of the ice-covered period. Early winter air temperatures in November and December dictate the nature of ice formation and much of the winter evaporative flux. Decreased ice cover, by itself, does not necessarily lead to enhanced annual evaporation losses. Rather, a combination of low ice cover and warm spring air temperatures, leading to an early breakup, can significantly lengthen the next evaporation season and cause greater cumulative water loss the subsequent year. The influence of individual synoptic events on annual evaporation is notable enough that the research community should ensure that their role is properly captured in numerical models to provide sound predictions of future Laurentian Great Lakes evaporation regimes

    Workshop Examines Warming of Lakes Worldwide

    Get PDF
    It is widely recognized that climate change is affecting terrestrial and aquatic ecosystems. Recent studies have revealed significant warming of lakes throughout the world, and this rate of warming is often larger than that of the ambient air temperature (up to 2–3 times more rapid). Although hypotheses have been proposed to explain these high rates of lake warming (e.g., ice albedo feedbacks or changes in cloud cover), the fundamental drivers remain poorly understood. Furthermore, these rapid warming rates have profound implications for lake hydrodynamics, productivity, and biotic communities. It is essential therefore that global data sets of water temperature be compiled to monitor and understand these long-term changes in lakes, reservoirs, and other inland water bodies
    corecore