108 research outputs found

    Urban Climate, Human behavior & Energy consumption: from LCZ mapping to simulation and urban planning (the MapUCE project)

    Get PDF
    International audienceThe MApUCE project aims to integrate in urban policies and most relevant legal documents quantitative data from urban microclimate, climate and energy.The primary objective of this project is to obtain climate and energy quantitative data from numerical simulations, focusing on urban microclimate and building energy consumption in the residential and service sectors, which represents in France 41% of the final energy consumption. Both aspects are coupled as building energy consumption is highly meteorologically dependent (e.g. domestic heating, air-conditioning) and heat waste impact the Urban Heat Island. We propose to develop, using national databases, a generic and automated method for generating Local Climate Zones (LCZ) for all cities in France, including the urban architectural, geographical and sociological parameters necessary for energy and microclimate simulations.As will be presented, previous projects on adaptation of cities to climate change have shown that human behavior is a very potent level to address energy consumption reduction, as much as urban forms or architectural technologies. Therefore, in order to further refine the coupled urban climate and energy consumption calculations, we will develop within TEB (and its Building Energy Module) a model of energy consumer behavior.The second objective of the project is to propose a methodology to integrate quantitative data in urban policies. Lawyers analyze the potential levers in legal and planning documents. A few “best cases” are also studied, in order to evaluate their performances. Finally, based on urban planning agencies requirements, we will define vectors to include quantified energy-climate data to legal urban planning documents. These vectors have to be understandable by urban planners and contain the relevant information.To meet these challenges, the project is organized around strongly interdisciplinary partners in the following fields: law, urban climate, building energetics, architecture, sociology, geography and meteorology, as well as the national federation of urban planning agencies.In terms of results, the cross-analysis of input urban parameters and urban micro-climate-energy simulated data will be available on-line as standardized maps for each of the studied cities. The urban parameter production tool as well as the models will be available as open-source. LCZ and associated urban (and social!) indicators may be integrated within the WUDAPT database

    RÔLE DE L'OCCUPATION DU SOL VIS À VIS DE LA MODÉLISATION DES FLUX ENERGÉTIQUES ET HYDRIQUES EN MILIEU URBAIN ET PÉRIURBAIN

    Get PDF
    National audienceLe projet Rosenhy vise Ă  Ă©tudier l’impact de l’occupation du sol sur la modĂ©lisation mĂ©tĂ©orologique et hydrologique en termes de flux Ă©nergĂ©tiques et hydriques, en milieu urbain et pĂ©riurbain. Trois sites appartenant aux observatoires français OTHU et ONEVU sont au centre de ce projet. Le quartier urbain hĂ©tĂ©rogĂšne du Pin sec (Nantes), impermĂ©abilisĂ© Ă  environ 45%, a fait l’objet d’une campagne expĂ©rimentale durant le mois de juin 2012, visant Ă  estimer les flux de chaleur sensible et latente avec une haute rĂ©solution spatiale et temporelle par rapport aux mesures rĂ©alisĂ©es en continu sur ce site depuis 5 ans. Deux bassins versant pĂ©riurbains (La ChĂ©zine Ă  Nantes et l’Yzeron Ă  Lyon), avec un taux d’impermĂ©abilisation moins important (environ 10%) mais grandissant depuis plusieurs dĂ©cennies, sont aussi Ă©tudiĂ©s. Ces deux derniers sites bĂ©nĂ©ficient d’un suivi hydromĂ©tĂ©orologique depuis 10 ans pour la ChĂ©zine et 15 ans pour l’Yzeron. Sur ces trois sites, diffĂ©rentes sources de donnĂ©es d’occupation du sol Ă  diffĂ©rentes rĂ©solutions sont disponibles :diffĂ©rentes bases de donnĂ©es gĂ©ographiques communĂ©ment utilisĂ©es par la communautĂ© scientifique et les collectivitĂ©s et des donnĂ©es tĂ©lĂ©dĂ©tectĂ©es (multispectrales et hyperspectrales). L’utilisation de ces donnĂ©es en entrĂ©e de diffĂ©rents modĂšles mĂ©tĂ©orologiques et hydrologiques implique un travail d’analyse et de classification pour adapter les informations aux besoins des modĂšles. Dans ce projet, les diffĂ©rents modĂšles adaptĂ©s au milieu urbain ou pĂ©rirubain sont Ă©valuĂ©s et amĂ©liorĂ©s. Ainsi, les modĂšles hydrologiques pĂ©rirubains sont en dĂ©veloppement pour prendre en compte les diffĂ©rentes pratiques de gestion des eaux pluviales existantes (noues, toitures vĂ©gĂ©talisĂ©es, ...). L’utilisation conjointe des donnĂ©es simulĂ©es par les diffĂ©rents modĂšles aidera Ă  dĂ©terminer le rĂŽle de la part des surfaces naturelles et artificielles sur les bilans Ă©nergĂ©tique et hydrique en milieu plus ou moins urbanisĂ©. Le milieu pĂ©riurbain Ă©tant en Ă©volution, le projet s’intĂ©ressera aussi Ă  des scĂ©narios d’urbanisation prospectifs en regardant d’une part l’impact de la densification sur les scĂ©narios construits pour l’Yzeron lors du projet AVuPUR (ANR-VMCS, 2008-2011) et d’autre part, en rĂ©flĂ©chissant conjointement avec Nantes MĂ©tropole, aux possibles voies d’évolution sur le bassin de la ChĂ©zine

    The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of Earth surface variables and fluxes

    Get PDF
    CC Attribution 3.0 License.Final revised paper also available at http://www.geosci-model-dev.net/6/929/2013/gmd-6-929-2013.pdfInternational audienceSURFEX is a new externalized land and ocean surface platform that describes the surface fluxes and the evolution of four types of surface: nature, town, inland water and ocean. It can be run either coupled or in offline mode. It is mostly based on pre-existing, well validated scientific models. It can be used in offline mode (from point scale to global runs) or fully coupled with an atmospheric model. SURFEX is able to simulate fluxes of carbon dioxide, chemical species, continental aerosols, sea salt and snow particles. It also includes a data assimilation module. The main principles of the organization of the surface are described first. Then, a survey is made of the scientific module (including the coupling strategy). Finally the main applications of the code are summarized. The current applications are extremely diverse, ranging from surface monitoring and hydrology to numerical weather prediction and global climate simulations. The validation work undertaken shows that replacing the pre-existing surface models by SURFEX in these applications is usually associated with improved skill, as the numerous scientific developments contained in this community code are used to good advantage

    Developing a research strategy to better understand, observe, and simulate urban atmospheric processes at kilometer to subkilometer scales

    Get PDF
    A Met Office/Natural Environment Research Council Joint Weather and Climate Research Programme workshop brought together 50 key international scientists from the UK and international community to formulate the key requirements for an Urban Meteorological Research strategy. The workshop was jointly organised by University of Reading and the Met Office

    Comment Joël Noilhan a influencé la modélisation et les études en climat urbain

    No full text
    International audienceBien que ce fait soit peu connu, Joël Noilhan a commencé sa carriÚre non pas dans l'étude de la végétation, mais dans celle du climat urbain. Ses résultats de thÚse sur les échanges radiatifs entre les différentes faces d'un bùtiment, le ciel et le sol sont encore utilisés comme hypothÚses dans la plupart des modÚles de canopée urbaine, comme celui développé au CNRM, Town Energy Balance (TEB). Joël a contribué dans les années 2000 à l'essor de la météorologie urbaine au CNRM. Il a notamment encouragé les collaborations internationales avec l'équipe canadienne du professeur Tim Oke, spécialiste mondial du climat urbain, et initié un volet expérimental dédié à l'urbain sur la ville de Marseille, lors de la campagne Escompte en 2001. This is not well known, but Joël Noilhan did not start his career by studying vegetation processes, but rather urban climate. His PhD results on radiative exchanges around a building still form the basis of radiative processes in most urban canopy models such as the Town Energy Balance (TEB) developed at CNRM. In the 2000s, he contributed to the urban climate studies at CNRM. He encouraged an international collaboration with the team of Tim Oke, in Canada, an international expert in urban climate. He also initiated an experimental component dedicated to urban environment over the city of Marseille, during the Escompte campaign in 2001

    Modélisation des processus de surface et de la couche limite en milieu urbain

    No full text
    TOULOUSE3-BU Sciences (315552104) / SudocSudocFranceF

    Simulations of urban heat island effect in Paris Region during various types of heatwaves, and in different adaptation scenarios

    No full text
    Content - These data present air temperature, in the shade, 2m above grounds in Paris Region (projection: RGF93/Lambert 93, EPSG:2154) at different times of the day, for various heat waves conditions, and in different prospective scenarios for the built-up evolution and adaptation actions implementations. - more information can be found here : https://www.umr-cnrm.fr/ville.climat/spip.php?rubrique45 Classification of the data - the first 5 letters (e.g. "CDFFA") present the prospective scenario - the 4 following letters (e.g. "HW34") present the type of heat wave - the following 2 letters (e.g. "D8") present the length of the heat wave (number of days after the beginning of the heat wave) - the final letters (e.g. H15) represent the time (UTC : one hour should be added for French time) of the day Prospective scenarios - the first letter is always C - the second letter represents the expansion scenario. They are presented here : Lemonsu, A., ViguiĂ©, V., Daniel, M., Masson, V., 2015. Vulnerability to heat waves: Impact of urban expansion scenarios on urban heat island and heat stress in Paris (France). Urban Climate 14, 586–605. - D stands for "dense development" - F for business as usual scenario ("fil de l'eau" in French) - V for a scenario with 10% more parks - the third letter represents the building evolution scenario - F stands for business as usual scenario - V for a scenario with more insulation and reflective roofs - the third letter represents AC use - F stands for strong AC use - M for moderate AC use - N for no AC use - the fourth letter represents vegetation watering - N stands for no watering - A for watering Heat waves - the figure (e.g. "34" in "HW34") represents the intensity class, in °C of the heat wave. It is more precisely the maximum daily temperature observed without the impact of the urban heat island effect. (Tmax=34, 38, 42, or 46°C). Other information - see the file "aggregated data.xls" for more information and data about energy consumption for AC, and averages of temperatures in the city over the entire day
    • 

    corecore