133 research outputs found

    Bis(2,2â€Č-bipyridyl-Îș2 N,Nâ€Č)bis­(2-hydroxy­benzoato)-ÎșO 1;Îș2 O 1,O 1â€Č-cadmium(II) methanol solvate

    Get PDF
    The title compound, [Cd(C7H5O3)2(C10H8N2)2]·CH3OH, contains one monomeric seven-coordinate cadmium complex and one methanol solvate mol­ecule. The CdII atom is coordinated to two 2,2â€Č-bipyridyl ligands via the N atoms and to two salicylate anions (Hsal−) via the carboxyl­ate O atoms, which act as monodentate ligand for the one and bidentate ligand for the second. The CdII atom exhibits a {6 + 1} environment, approximately described as a distorted capped octa­hedron with the apical positions occupied by one of the two N atoms belonging to one bipyridyl ligand and one of the two carboxyl­ate O atoms from the monodentate Hsal− ligand. Two intra­molecular six-membered hydrogen-bonded rings are present, generated from inter­actions between the carboxyl­ate and hydr­oxy groups of the salicylate ligands. There is one inter­molecular hydrogen-bonding inter­action involving the methanol solvent mol­ecule and the carboxyl­ate group from the monodentate Hsal− ligand. The crystal packing is governed by π–π stacking inter­actions [centroid–centroid distance = 3.783 (4) Å] which occur between bipyridyl ligands, by C—H⋯O and C—Hâ‹ŻÏ€ inter­actions and by numerous van der Waals contacts

    Dibromidobis­(4-hydr­oxy-1,5-dimethyl-2-phenyl-3-pyrazolone)zinc(II)

    Get PDF
    In the title compound, [ZnBr2(C11H12N2O2)2], the Zn(II) ion is coordinated by two Br atoms and two O atoms from two 4-hydroxy­anti­pyrine mol­ecules via the carbonyl O atoms, which act as monodentate ligands, giving rise to a distorted tetra­hedral geometry. The values of the bond angles at the Zn atom are in the range 99.4 (1) to 113.2 (1)°. The presence of O—H⋯O and O—H⋯Br intra­molecular hydrogen bonds can explain the difference between the two Zn—O [1.961 (3)/2.015 (3) Å] and the two Zn—Br [2.350 (1)/2.378 (1) Å] bond lengths. The crystal structure is governed by C—H⋯O, C—H⋯Br and Zn—Br⋯Cg(π-ring) inter­actions

    Dichloridobis[(S)-2-hydroxy­propion­amide-Îș2 O,Oâ€Č]manganese(II)

    Get PDF
    In the title compound, [MnCl2(C3H7NO2)2], the MnII ion is bound to two Cl atoms and to four O atoms from two lacta­mide mol­ecules which act as bidentate ligands, giving rise to a highly distorted octa­hedral coordination geometry. The axial positions are occupied by one Cl atom and one O (hydr­oxy) atom. The values of the cis bond angles at the Mn atom are in the range 72.33 (5)–100.17 (6)°. Of the two possible coordination modes (N,O- or O,O-bidentate) in metal complexes with lacta­mide or its derivatives described in the literature, the title compound exhibits the O,O-bidentate mode. In the crystal structure, monomeric manganese(II) complexes are linked by several N—H⋯Cl, O—H⋯Cl and O—H⋯O hydrogen bonds, generating a three-dimensional network

    Comprehensive determination of the solid state stability of bethanechol chloride active pharmaceutical ingredient using combined analytical tools

    Get PDF
    International audienceThe use of an integrative analytical approach allowed us to establish the intrinsic solid state stability of bethanechol chloride (BC), an active pharmaceutical ingredient used in the treatment of urinary retention. First, the crystal structure of the monoclinic form has been described using single crystal X-ray diffraction studies. Second, thermal analyses revealed that the compound degrades upon melting, with an apparent melting temperature estimated to be 231 °C. No transition from the monoclinic to the orthorhombic form has been observed, suggesting that the monoclinic form is the stable one. Third, the two-step melting–decomposition process has been elucidated by liquid chromatography and thermogravimetry coupled to mass spectrometry. The first step corresponds to the sample liquefaction, which consists of the gradual dissolution of bethanechol chloride in its liquid degradant, i.e. betamethylcholine chloride. This step is in agreement with Bawn kinetics and the activation energy of the reaction has been estimated at 35.5 kcal mol−1. The second step occurs with accelerated degradation in the melt. Elucidation of secondary decomposition pathways evidenced autocatalytic properties conferred by the formation of both isocyanic acid and methyl chloride. Finally, dynamic water vapor sorption analysis showed a substantial hygroscopicity of the drug substance. A deliquescent point has been determined at 56% relative humidity at 25 °C

    The International DORIS Service (IDS) - Recent Developments in Preparation for ITRF2013

    Get PDF
    The International DORIS Service (IDS) was created in 2003 under the umbrella of the International Association of Geodesy (IAG) to foster scientific research related to the French DORIS tracking system and to deliver scientific products, mostly related to the International Earth rotation and Reference systems Service (IERS). We first present some general background related to the DORIS system (current and planned satellites, current tracking network and expected evolution) and to the general IDS organization (from Data Centers, Analysis Centers and Combination Center). Then, we discuss some of the steps recently taken to prepare the IDS submission to ITRF2013 (combined weekly time series based on individual solutions from several Analysis Centers). In particular, recent results obtained from the Analysis Centers and the Combination Center show that improvements can still be made when updating physical models of some DORIS satellites, such as Envisat, Cryosat-2 or Jason-2. The DORIS contribution to ITRF2013 should also benefit from the larger number of ground observations collected by the last generation of DGXX receivers (first instrument being onboard Jason-2 satellite). In particular for polar motion, sub-millarcsecond accuracy seems now to be achievable. Weekly station positioning internal consistency also seems to be improved with a larger DORIS constellation

    Nano-Engineered Scaffold for Osteoarticular Regenerative Medicine

    Get PDF
    In the last decade, regenerative medicine has benefited from the exponential development of nanomaterial sciences, tissue engineering and cell-based therapies. More and more sophisticated designed structures and surface topologies are being developed to basically mimic the extracellular matrix of native tissues such as cartilage and bone. Here we give an overview of the progress made in osteochondral lesion repair, with nano-engineered scaffolds comprising building blocks such as nanoparticles, nanotubes, layer-by-layer nano-assemblies, molecular self-assembly, nanopatterned surfaces
. This nano-engineering technology is coupled with bio-functionalization, by the use of adhesion peptides, growth factors, or deoxyribonucleic acid, to drive cell adhesion, proliferation and behavior towards tissue regeneration. In osteochondral regeneration, the challenge is the simultaneous development of chondrocytes and cartilage extracellular matrix on the one side and a well vascularized bone tissue with osteoblasts on the other sid

    Routine molecular profiling of cancer: results of a one-year nationwide program of the French Cooperative Thoracic Intergroup (IFCT) for advanced non-small cell lung cancer (NSCLC) patients.

    Get PDF
    International audienceBackground: The molecular profiling of patients with advanced non-small-cell lung cancer (NSCLC) for known oncogenic drivers is recommended during routine care. Nationally, however, the feasibility and effects on outcomes of this policy are unknown. We aimed to assess the characteristics, molecular profiles, and clinical outcomes of patients who were screened during a 1-year period by a nationwide programme funded by the French National Cancer Institute. Methods This study included patients with advanced NSCLC, who were routinely screened for EGFR mutations, ALK rearrangements, as well as HER2 (ERBB2), KRAS, BRAF, and PIK3CA mutations by 28 certified regional genetics centres in France. Patients were assessed consecutively during a 1-year period from April, 2012, to April, 2013. We measured the frequency of molecular alterations in the six routinely screened genes, the turnaround time in obtaining molecular results, and patients' clinical outcomes. This study is registered with ClinicalTrials.gov, number NCT01700582. Findings 18 679 molecular analyses of 17 664 patients with NSCLC were done (of patients with known data, median age was 64·5 years [range 18–98], 65% were men, 81% were smokers or former smokers, and 76% had adenocarcinoma). The median interval between the initiation of analysis and provision of the written report was 11 days (IQR 7–16). A genetic alteration was recorded in about 50% of the analyses; EGFR mutations were reported in 1947 (11%) of 17 706 analyses for which data were available, HER2 mutations in 98 (1%) of 11 723, KRAS mutations in 4894 (29%) of 17 001, BRAF mutations in 262 (2%) of 13 906, and PIK3CA mutations in 252 (2%) of 10 678; ALK rearrangements were reported in 388 (5%) of 8134 analyses. The median duration of follow-up at the time of analysis was 24·9 months (95% CI 24·8–25·0). The presence of a genetic alteration affected first-line treatment for 4176 (51%) of 8147 patients and was associated with a significant improvement in the proportion of patients achieving an overall response in first-line treatment (37% [95% CI 34·7–38·2] for presence of a genetic alteration vs 33% [29·5–35·6] for absence of a genetic alteration; p=0·03) and in second-line treatment (17% [15·0–18·8] vs 9% [6·7–11·9]; p<0·0001). Presence of a genetic alteration was also associated with improved first-line progression-free survival (10·0 months [95% CI 9·2–10·7] vs 7·1 months [6·1–7·9]; p<0·0001) and overall survival (16·5 months [15·0–18·3] vs 11·8 months [10·1–13·5]; p<0·0001) compared with absence of a genetic alteration. Interpretation Routine nationwide molecular profiling of patients with advanced NSCLC is feasible. The frequency of genetic alterations, acceptable turnaround times in obtaining analysis results, and the clinical advantage provided by detection of a genetic alteration suggest that this policy provides a clinical benefit

    Tye7 regulates yeast Ty1 retrotransposon sense and antisense transcription in response to adenylic nucleotides stress

    Get PDF
    Transposable elements play a fundamental role in genome evolution. It is proposed that their mobility, activated under stress, induces mutations that could confer advantages to the host organism. Transcription of the Ty1 LTR-retrotransposon of Saccharomyces cerevisiae is activated in response to a severe deficiency in adenylic nucleotides. Here, we show that Ty2 and Ty3 are also stimulated under these stress conditions, revealing the simultaneous activation of three active Ty retrotransposon families. We demonstrate that Ty1 activation in response to adenylic nucleotide depletion requires the DNA-binding transcription factor Tye7. Ty1 is transcribed in both sense and antisense directions. We identify three Tye7 potential binding sites in the region of Ty1 DNA sequence where antisense transcription starts. We show that Tye7 binds to Ty1 DNA and regulates Ty1 antisense transcription. Altogether, our data suggest that, in response to adenylic nucleotide reduction, TYE7 is induced and activates Ty1 mRNA transcription, possibly by controlling Ty1 antisense transcription. We also provide the first evidence that Ty1 antisense transcription can be regulated by environmental stress conditions, pointing to a new level of control of Ty1 activity by stress, as Ty1 antisense RNAs play an important role in regulating Ty1 mobility at both the transcriptional and post-transcriptional stages

    Bone Marrow Transplant

    Get PDF
    Mucopolysaccharidosis type I-H (MPS I-H) is a rare lysosomal storage disorder caused by α-L-Iduronidase deficiency. Early haematopoietic stem cell transplantation (HSCT) is the sole available therapeutic option to preserve neurocognitive functions. We report long-term follow-up (median 9 years, interquartile range 8-16.5) for 51 MPS I-H patients who underwent HSCT between 1986 and 2018 in France. 4 patients died from complications of HSCT and one from disease progression. Complete chimerism and normal α-L-Iduronidase activity were obtained in 84% and 71% of patients respectively. No difference of outcomes was observed between bone marrow and cord blood stem cell sources. All patients acquired independent walking and 91% and 78% acquired intelligible language or reading and writing. Intelligence Quotient evaluation (n = 23) showed that 69% had IQ ≄ 70 at last follow-up. 58% of patients had normal or remedial schooling and 62% of the 13 adults had good socio-professional insertion. Skeletal dysplasia as well as vision and hearing impairments progressed despite HSCT, with significant disability. These results provide a long-term assessment of HSCT efficacy in MPS I-H and could be useful in the evaluation of novel promising treatments such as gene therapy

    Altimetry for the future: Building on 25 years of progress

    Get PDF
    In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the ‘‘Green” Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instruments’ development and satellite missions’ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion
    • 

    corecore