9 research outputs found

    Non-receptor cytosolic protein tyrosine kinases from various rat tissues

    Get PDF
    AbstractAdipocytic-cytosolic non-receptor protein tyrosine kinase (CytPTK) when activated can substitute for the insulin receptor tyrosine kinase (InsRTK), in manifesting several insulin effects in insulin-receptor independent fashion. Our aims here were to utilize PolyGlu4Tyr, a good experimental exogenous substrate for protein tyrosine kinases (PTKs) in general, for studying qualitative and quantitative parameters of CytPTKs extracted from different tissue cytosols. At the same time, we would search for a unique specific marker specifically characterizing CytPTKs. High speed supernatants of spleen, thymus, smooth muscle, lung and kidney were found to be rich in CytPTK activities. Their specific activities being 6- to 13-fold that of liver or adipose cytosols. Brain, testis and adrenal cytosols were an intermediate source of CytPTK activity, whereas CytPTK activity of heart and skeletal muscle was low. It was also evaluated that the capacity of the cytosol to phosphorylate PolyGlu4Tyr is 15–50% that of the non-stimulated Triton X-100 extractable plasma membrane PTKs. Fractionation of the cytosols on superose 12 column revealed several CytPTKs within the same tissue, their peaks ranging between 30 and 450 kDa. Immunoblotting analysis showed Fyn and Lyn were present in most tissue cytosols. Upon immunoprecipitation, however, with anti-Fyn or anti-Lyn, negligible amounts (< 2%) of the total cellular CytPTK were precipitated. Thus, these general markers of CytPTKs comprise only a minor proportion of the total intracellular PolyGlu4Tyr phosphorylating capacity. To see whether a specific marker for CytPTK could be detected, we also examined the requirement of CytPTKs for divalent ions, their preferred phosphate donor and their sensitivity to inhibition by known PTK inhibitors. We found that the order of reactivity with divalent cations was Co2+ > Mn2+ > Mg2+, while Zn2+ and Ca2+ did not support CytPTK activity. The best phosphate donor was ATP (ED50 = μM), but other nucleoside 3-phosphates could substitute for ATP at high concentrations. With respect to these parameters, no basic difference exists between cytosolic and plasma-membrane PTKs. The PTK inhibitors, genestein and quercetin, inhibited both cytosolic and membranal PTKs at micromolar concentrations. In contrast, staurosporine was a potent inhibitor of CytPTKs (IC50 5–20 nM) and a poor inhibitor of membranal PTKs (IC50 10–40 μM). One of the conclusions we can draw from this study is that tissue cytosols contain PolyGlu4Tyr phosphorylating capacity in quantities greater than previously assumed and that the low level of phosphotyrosine found in cells is not the result of limited intracellular levels of CytPTKs

    Targeting the SIN3A-PF1 interaction inhibits epithelial to mesenchymal transition and maintenance of a stem cell phenotype in triple negative breast cancer

    Get PDF
    Triple negative breast cancer (TNBC) is characterized by a poorly differentiated phenotype and limited treatment options. Aberrant epigenetics in this subtype represent a potential therapeutic opportunity, but a better understanding of the mechanisms contributing to the TNBC pathogenesis is required. The SIN3 molecular scaffold performs a critical role in multiple cellular processes, including epigenetic regulation, and has been identified as a potential therapeutic target. Using a competitive peptide corresponding to the SIN3 interaction domain of MAD (Tat-SID), we investigated the functional consequences of selectively blocking the paired amphipathic &alpha;-helix (PAH2) domain of SIN3. Here, we report the identification of the SID-containing adaptor PF1 as a factor required for maintenance of the TNBC stem cell phenotype and epithelial-to-mesenchymal transition (EMT). Tat-SID peptide blocked the interaction between SIN3A and PF1, leading to epigenetic modulation and transcriptional downregulation of TNBC stem cell and EMT markers. Importantly, Tat-SID treatment also led to a reduction in primary tumor growth and disseminated metastatic diseasein vivo. In support of these findings, knockdown ofPF1expression phenocopied treatment with Tat-SID bothin vitroandin vivo. These results demonstrate a critical role for a complex containing SIN3A and PF1 in TNBC and provide a rational for its therapeutic targeting

    Interference with Sin3 function induces epigenetic reprogramming and differentiation in breast cancer cells

    Get PDF
    Sin3A/B is a master transcriptional scaffold and corepressor that plays an essential role in the regulation of gene transcription and maintenance of chromatin structure, and its inappropriate recruitment has been associated with aberrant gene silencing in cancer. Sin3A/B are highly related, large, multidomian proteins that interact with a wide variety of transcription factors and corepressor components, and we examined whether disruption of the function of a specific domain could lead to epigenetic reprogramming and derepression of specific subsets of genes. To this end, we selected the Sin3A/B-paired amphipathic α-helices (PAH2) domain based on its established role in mediating the effects of a relatively small number of transcription factors containing a PAH2-binding motif known as the Sin3 interaction domain (SID). Here, we show that in both human and mouse breast cancer cells, the targeted disruption of Sin3 function by introduction of a SID decoy that interferes with PAH2 binding to SID-containing partner proteins reverted the silencing of genes involved in cell growth and differentiation. In particular, the SID decoy led to epigenetic reprogramming and reexpression of the important breast cancer-associated silenced genes encoding E-cadherin, estrogen receptor α, and retinoic acid receptor β and impaired tumor growth in vivo. Interestingly, the SID decoy was effective in the triple-negative M.D. Anderson-Metastatic Breast-231 (MDA-MB-231) breast cancer cell line, restoring sensitivity to 17β-estradiol, tamoxifen, and retinoids. Therefore, the development of small molecules that can block interactions between PAH2 and SID-containing proteins offers a targeted epigenetic approach for treating this type of breast cancer that may also have wider therapeutic implications

    Abstract 411: Targeted PF1, JARID1B inhibition induces epigenetic reprogramming in triple negative breast cancer.

    No full text
    Triple Negative Breast cancer (TNBC) is an aggressive subtype of breast cancer associated with early recurrence and poor prognosis. The treatment options are limited due to lack of expression of common drug targets: estrogen receptor (ER), Progesterone receptor (PR) and Epidermal growth factor receptor 2 (Her2). Epigenetic programs can generate aberrant transcription contributing to TNBC progression; however the dynamic and reversible nature of epigenetic changes offers the possibility to reprogram cancer cells to re-express targets that can render TNBC sensitive to targeted therapies like tamoxifen. Envisioning such ‘epidrugs’, we previously published that targeting PAH2 domain of the master transcriptional scaffold Sin3 by stable expression of 13-mer peptide corresponding to a specific motif called SID (mSin3A interaction domain) disrupts its interaction with a small group of SID-containing transcription factors. This interference reverts the expression of important breast cancer-associated genes and impairs tumor growth in vivo. We have now extended our study towards the evaluation of a cell penetrating SID peptide (pSID) in in vitro and in vivo models to establish parameters for the design of targeted epigenetic therapy for TNBC. pSID co-localizes with Sin3A and interference with PAH2-mediated Sin3A functions by pSID is shown by disruption of Sin3A-MAD1 interactions in Co-IP and Duo-Link assays. pSID treatment in MDA-MB 231 cells results in functional re-expression of CDH1 and ER along with increased H3K4 and decreased H3K27 methylation on their promoters. We also show reduction in the tumorsphere formation by pSID-pretreated MDA-MB-231 cells indicating possible epigenetic reprogramming of tumor initiating stem cells towards a differentiated phenotype. Support to this hypothesis is added by the 50% reduction in tumor growth and re-expression of CDH1 observed in FVB mice injected with pSID-pretreated MMTV-myc cells. Moreover, microarray expression analysis indicates pSID-induced EMT reversal, increased cell adhesion and reduced cell migration. Intriguingly, upon further dissection of the mechanism of epigenetic regulation by pSID we show dissociation of two important chromatin readers/modifiers from the Sin3 complex: histone H3K4Me3/2 demethylase JARID1B and H3K4Me0 binding PHD-like domain containing protein PF1; both with significantly correlated overexpression in invasive breast carcinoma. We also observe loss of recruitment of JARID1B but not Sin3A from the CDH1 promoter. Currently studies are underway to understand the cooperative role between JARID1B and PF1 in potentiating the aberrant transcription regulation by Sin3 at important breast cancer-associated promoters that can be selectively reprogrammed by SID decoys. We believe this selectivity can limit the otherwise adverse affects that may be observed by the use of generic HDAC inhibitors and demethylating agents

    Abstract 4115: Inhibition of triple negative breast cancer cell invasion by the targeted interference of Sin3A function affecting Wnt and TGFβ signaling.

    No full text
    Cancer cell invasion is an obligatory step for metastatic dissemination that contributes to rapid relapse and a poor survival in TNBC patients. Development of novel therapeutic strategies to block tumor invasion is an unmet need for TNBC treatment and for other tumor types. We reported that decoys with the SID sequence designed to bind and inhibit the function of PAH-2 domain of Sin3A protein markedly prolong survival in the adjuvant setting due to inhibition of metastatic dissemination to the lungs and bone marrow in TNBC mouse models. Here, we show that TNBC cell lines treated with SID decoys (peptides) display a strong in vitro inhibition of migration and invasion. This is accompanied by actin cytoskeleton reorganization with increased cortical actin, and inhibition of proteolytic enzymes (MMP9; MT-MMP1 and uPA) involved in extracellular matrix degradation. DNA microarray and Ingenuity pathway analysis (IPA) showed that the SID decoys inhibit Wnt and TGFβ signaling that is associated with epithelial to mesenchymal transition (EMT). Treatment with SID decoy peptide downregulated WNT/β-catenin-driven transactivation as measured by decreased promoter H3K4me3 and decreased expression of Wnt target genes like LEF1 and TCF7L2. We also show that SID decoys induce translocation of nuclear β-catenin to the cytoplasm in TNBC at 24 hours. Wnt/β-catenin is critical for EMT, cancer stem cell self-renewal, and early invasion in TNBC. TGIF1, a transcription factor that modulates TGFβ and Wnt signaling pathways and known to to interact with the PAH2 domain of Sin3A, can be dissociated from Sin3A complex by SID decoy treatment as measured by co-immunoprecipitation (Co-IP) and proximity linked assay. DNA microarray of SID peptide treated TNBC cells shows inhibition of TGFβ signaling evidenced by downregulation of MMP9, MT1-MMP and PLAU, known target genes of this pathway. This is in line with inhibition of the EMT program predicted by the IPA analysis in SID peptide treated TNBC. Taken together, the results indicate that SID decoys have potential value as therapeutic agents to revert the EMT program in TNBC that should translate into the inhibition of metastasis dissemination and eradication of residual disease in TNBC. To test this in clinic future investigations will involve the use of our previously identified small molecule mimetic of SID peptide, selamectin that is also a FDA approved drug. Use of a recently constructed cyclic stapled peptide that inhibits PAH-2 binding and invasion at <10nM is also anticipated

    Selective Inhibition of SIN3 Corepressor with Avermectins as a Novel Therapeutic Strategy in Triple-Negative Breast Cancer.

    No full text
    Triple-negative breast cancers (TNBC) lacking estrogen, progesterone, and HER2 receptors account for 10% to 20% of breast cancer and are indicative of poor prognosis. The development of effective treatment strategies therefore represents a pressing unmet clinical need. We previously identified a molecularly targeted approach to target aberrant epigenetics of TNBC using a peptide corresponding to the SIN3 interaction domain (SID) of MAD. SID peptide selectively blocked binding of SID-containing proteins to the paired α-helix (PAH2) domain of SIN3, resulting in epigenetic and transcriptional modulation of genes associated with epithelial-mesenchymal transition (EMT). To find small molecule inhibitor (SMI) mimetics of SID peptide, we performed an in silico screen for PAH2 domain-binding compounds. This led to the identification of the avermectin macrocyclic lactone derivatives selamectin and ivermectin (Mectizan) as candidate compounds. Both selamectin and ivermectin phenocopied the effects of SID peptide to block SIN3-PAH2 interaction with MAD, induce expression of CDH1 and ESR1, and restore tamoxifen sensitivity in MDA-MB-231 human and MMTV-Myc mouse TNBC cells in vitro. Treatment with selamectin or ivermectin led to transcriptional modulation of genes associated with EMT and maintenance of a cancer stem cell phenotype in TNBC cells. This resulted in impairment of clonogenic self-renewal in vitro and inhibition of tumor growth and metastasis in vivo. Underlining the potential of avermectins in TNBC, pathway analysis revealed that selamectin also modulated the expression of therapeutically targetable genes. Consistent with this, an unbiased drug screen in TNBC cells identified selamectin-induced sensitization to a number of drugs, including those targeting modulated genes

    Nontraumatic orbital hemorrhage

    No full text
    corecore