242 research outputs found

    Knowledge, acceptability, and use of misoprostol for preventing postpartum hemorrhage following home births in rural Ethiopia

    Get PDF
    Objective: To assess knowledge of, and intentions to use misoprostol to preventing postpartum hemorrhage by women in a pastoralist community of the Somali Region of Ethiopia. Methods: A cross-sectional study enrolled women aged 15–49 years living in Adadle district, Ethiopia, between April 26 and May 3, 2012. A structured questionnaire was used to collect data on participants’ knowledge of misoprostol and if they had any intention to use it in the future. Participants also detailed their preferred healthcare provider for administering misoprostol. Results: A total of 829 women were enrolled in the study. Among the participants, 42 (5.1%) had knowledge of misoprostol and 302 (36.4%) described themselves as being willing to use misoprostol in the future. Among respondents who were willing to use misoprostol in the future, traditional birth attendants were the preferred healthcare practitioners to administer it. Conclusion: Awareness of misoprostol was low in the study sample but willingness to use the drug was somewhat higher. Raising awareness and knowledge among communities and traditional birth attendants regarding the advantages of misoprostol is crucial to enhance uptake and reduce the incidence of postpartum hemorrhage

    Regulation of the let-7a-3 Promoter by NF-κB

    Get PDF
    Changes in microRNA expression have been linked to a wide array of pathological states. However, little is known about the regulation of microRNA expression. The let-7 microRNA is a tumor suppressor that inhibits cellular proliferation and promotes differentiation, and is frequently lost in tumors. We investigated the transcriptional regulation of two let-7 family members, let-7a-3 and let-7b, which form a microRNA cluster and are located 864 bp apart on chromosome 22q13.31. Previous reports present conflicting data on the role of the NF-κB transcription factor in regulating let-7. We cloned three fragments upstream of the let-7a-3/let-7b miRNA genomic region into a plasmid containing a luciferase reporter gene. Ectopic expression of subunits of NF-κB (p50 or p65/RelA) significantly increased luciferase activity in HeLa, 293, 293T and 3T3 cells, indicating that the let-7a-3/let-7b promoter is highly responsive to NF-κB. Mutation of a putative NF-κB binding site at bp −833 reduced basal promoter activity and decreased promoter activity in the presence of p50 or p65 overexpression. Mutation of a second putative binding site, at bp −947 also decreased promoter activity basally and in response to p65 induction, indicating that both sites contribute to NF-κB responsiveness. While the levels of the endogenous primary let-7a and let-7b transcript were induced in response to NF-κB overexpression in 293T cells, the levels of fully processed, mature let-7a and let-7b miRNAs did not increase. Instead, levels of Lin-28B, a protein that blocks let-7 maturation, were induced by NF-κB. Increased Lin-28B levels could contribute to the lack of an increase in mature let-7a and let-7b. Our results suggest that the final biological outcome of NF-κB activation on let-7 expression may vary depending upon the cellular context. We discuss our results in the context of NF-κB activity in repressing self-renewal and promoting differentiation

    ACSL3 is a novel GABARAPL2 interactor that links ufmylation and lipid droplet biogenesis

    Get PDF
    ABSTRACT While studies of the autophagy-related (ATG) genes in knockout models have led to an explosion of knowledge about the functions of autophagy components, the exact roles of LC3 and GABARAP family proteins (human ATG8 equivalents) are still poorly understood. A major drawback in understanding their roles is that the available interactome data has largely been acquired using overexpression systems. To overcome these limitations, we employed CRISPR/Cas9-based genome-editing to generate a panel of cells in which human ATG8 genes were tagged at their natural chromosomal locations with an N-terminal affinity epitope. This cellular resource was employed to map endogenous GABARAPL2 protein complexes using interaction proteomics. This approach identified the ER-associated protein and lipid droplet (LD) biogenesis factor ACSL3 as a stabilizing GABARAPL2-binding partner. GABARAPL2 bound ACSL3 in a manner dependent on its LC3-interacting regions, whose binding site in GABARAPL2 was required to recruit the latter to the ER. Through this interaction, the UFM1-activating enzyme UBA5 became anchored at the ER. Furthermore, ACSL3 depletion and LD induction affected the abundance of several ufmylation components and ER-phagy. Together these data allow us to define ACSL3 as a novel regulator of the enigmatic UFM1 conjugation pathway

    A Mitochondria-Anchored Isoform of the Actin-Nucleating Spire Protein Regulates Mitochondrial Division

    Get PDF
    Mitochondrial division, essential for survival in mammals, is enhanced by an inter-organellar process involving ER tubules encircling and constricting mitochondria. The force for constriction is thought to involve actin polymerization by the ER-anchored isoform of the formin protein inverted formin 2 (INF2). Unknown is the mechanism triggering INF2-mediated actin polymerization at ER-mitochondria intersections. We show that a novel isoform of the formin-binding, actin-nucleating protein Spire, Spire1C, localizes to mitochondria and directly links mitochondria to the actin cytoskeleton and the ER. Spire1C binds INF2 and promotes actin assembly on mitochondrial surfaces. Disrupting either Spire1C actin- or formin-binding activities reduces mitochondrial constriction and division. We propose Spire1C cooperates with INF2 to regulate actin assembly at ER-mitochondrial contacts. Simulations support this model’s feasibility and demonstrate polymerizing actin filaments can induce mitochondrial constriction. Thus, Spire1C is optimally positioned to serve as a molecular hub that links mitochondria to actin and the ER for regulation of mitochondrial division

    Quantitative Analysis of miRNA Expression in Seven Human Foetal and Adult Organs

    Get PDF
    miRNAs have been found to repress gene expression at posttranscriptional level in cells. Studies have shown that expression of miRNAs is tissue-specific and developmental-stage-specific. The mechanism behind this could be explained by miRNA pathways. In this study, totally 54 miRNAs were analysed in 7 matched human foetal and adult organs (brain, colon, heart, kidney, liver, lung and spleen) using real-time PCR. Quantitative analysis showed that a big proportion of the 54 miRNAs have higher general expression in the organs of the foetal period than the adult period, with the exception of the heart. The miRNA gene promoter methylation level in the adult stages was higher than in the foetal stages. Moreover, there is a high general expression level of several miRNAs in both stages of brain, kidney, liver, lung and spleen, but not seen in colon and heart. Our results indicate that the miRNAs may play a bigger role in the foetal stage than the adult stage of brain, colon, kidney, liver, lung and spleen. The majority of the miRNAs analysed may play an important role in the growth and development of brain, kidney, liver, lung and spleen. However, a minority of the miRNAs may be functional in colon and heart

    Ectopic over-expression of tristetraprolin in human cancer cells promotes biogenesis of let-7 by down-regulation of Lin28

    Get PDF
    Tristetraprolin (TTP) is a AU-rich element (ARE) binding protein and exhibits suppressive effects on cell growth through down-regulation of ARE-containing oncogenes. The let-7 microRNA has emerged as a significant factor in tumor suppression. Both TTP and let-7 are often repressed in human cancers, thereby promoting oncogenesis by derepressing their target genes. In this work, an unexpected link between TTP and let-7 has been found in human cancer cells. TTP promotes an increase in expression of mature let-7, which leads to the inhibition of let-7 target gene CDC34 expression and suppresses cell growth. This event is associated with TTP-mediated inhibition of Lin28, which has emerged as a negative modulator of let-7. Lin28 mRNA contains ARE within its 3′-UTR and TTP enhances the decay of Lin28 mRNA through binding to its 3′-UTR. This suggests that the TTP-mediated down-regulation of Lin28 plays a key role in let-7 miRNA biogenesis in cancer cells

    Prediction of Associations between microRNAs and Gene Expression in Glioma Biology

    Get PDF
    Despite progress in the determination of miR interactions, their regulatory role in cancer is only beginning to be unraveled. Utilizing gene expression data from 27 glioblastoma samples we found that the mere knowledge of physical interactions between specific mRNAs and miRs can be used to determine associated regulatory interactions, allowing us to identify 626 associated interactions, involving 128 miRs that putatively modulate the expression of 246 mRNAs. Experimentally determining the expression of miRs, we found an over-representation of over(under)-expressed miRs with various predicted mRNA target sequences. Such significantly associated miRs that putatively bind over-expressed genes strongly tend to have binding sites nearby the 3′UTR of the corresponding mRNAs, suggesting that the presence of the miRs near the translation stop site may be a factor in their regulatory ability. Our analysis predicted a significant association between miR-128 and the protein kinase WEE1, which we subsequently validated experimentally by showing that the over-expression of the naturally under-expressed miR-128 in glioma cells resulted in the inhibition of WEE1 in glioblastoma cells
    corecore