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RESEARCH ARTICLE

A mitochondria-anchored isoform of the
actin-nucleating spire protein regulates
mitochondrial division
Uri Manor1†, Sadie Bartholomew2†, Gonen Golani3, Eric Christenson4,
Michael Kozlov3, Henry Higgs5, James Spudich2, Jennifer Lippincott-Schwartz1*

1Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of
Child Health and Human Development, Bethesda, United States; 2Department of
Biochemistry, Stanford University School of Medicine, Stanford, United States;
3Department of Physiology and Pharmacology, Tel Aviv University, Tel Aviv, Israel;
4Unit on Structural and Chemical Biology of Membrane Proteins, Eunice Kennedy
Shriver National Institute of Child Health and Human Development, Bethesda,
United States; 5Department of Biochemistry, Geisel School of Medicine, Hanover,
United States

Abstract Mitochondrial division, essential for survival in mammals, is enhanced by an

inter-organellar process involving ER tubules encircling and constricting mitochondria. The force

for constriction is thought to involve actin polymerization by the ER-anchored isoform of the

formin protein inverted formin 2 (INF2). Unknown is the mechanism triggering INF2-mediated

actin polymerization at ER-mitochondria intersections. We show that a novel isoform of the

formin-binding, actin-nucleating protein Spire, Spire1C, localizes to mitochondria and directly

links mitochondria to the actin cytoskeleton and the ER. Spire1C binds INF2 and promotes actin

assembly on mitochondrial surfaces. Disrupting either Spire1C actin- or formin-binding activities

reduces mitochondrial constriction and division. We propose Spire1C cooperates with INF2 to

regulate actin assembly at ER-mitochondrial contacts. Simulations support this model’s feasibility

and demonstrate polymerizing actin filaments can induce mitochondrial constriction. Thus, Spire1C

is optimally positioned to serve as a molecular hub that links mitochondria to actin and the ER for

regulation of mitochondrial division.

DOI: 10.7554/eLife.08828.001

Introduction
Mitochondrial division is a complex process that is essential for survival in mammals (Nunnari and

Suomalainen, 2012; Archer, 2014) and is facilitated by the actin cytoskeleton (De Vos et al., 2005;

DuBoff et al., 2012; Korobova et al., 2013, 2014; Hatch et al., 2014; Li et al., 2015). Two distinct

steps define mitochondrial division - an initial constriction of mitochondrial membranes, followed by

final membrane scission (Friedman et al., 2011; Korobova et al., 2013;Murley et al., 2013; Korobova

et al., 2014). Scission is mediated by the dynamin-related protein, Drp1, which self-assembles on the

surface of the mitochondrial outer membrane into helices that drive final mitochondrial division

(Lackner and Nunnari, 2009; Archer, 2014). The initial constriction step narrows the mitochondrial

tube diameter, which is necessary for Drp1 helix assembly (Labrousse et al., 1999; Yoon et al., 2001;

Legesse-Miller et al., 2003; Ingerman et al., 2005; Friedman et al., 2011;Mears et al., 2011;Murley

et al., 2013). This step is independent of Drp1 and occurs at ER-mitochondria intersection zones where

ER tubules associate with and wrap around the mitochondrial outer membrane along the plane of
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mitochondrial division (Friedman et al., 2011; Korobova et al., 2013; Murley et al., 2013; Korobova

et al., 2014). Along these zones, actin filaments polymerize, providing the force needed for constriction

that floppy ER tubules lack (Korobova et al., 2013, 2014; Hatch et al., 2014).

Inverted formin 2 (INF2) is a formin family protein that promotes actin filament polymerization in

a regulated fashion (Korobova et al., 2013, 2014). An ER-anchored splice isoform of INF2 (usually

referred to as INF2-CAAX) (Chhabra et al., 2009; Korobova et al., 2013) has been shown to facilitate

mitochondrial constriction and division via its actin polymerization activity (Korobova et al., 2013).

Given INF2, but not actin assembly, is localized throughout the ER, how INF2-mediated actin

assembly is specifically triggered at ER-mitochondria intersections to ensure mitochondrial division

remains an open central question.

Spire proteins are membrane-binding actin-nucleators that interact with and regulate formin proteins

(Bosch et al., 2007; Quinlan et al., 2007; Pechlivanis et al., 2009; Kerkhoff, 2011; Pfender et al.,

2011; Schuh, 2011; Vizcarra et al., 2011; Zeth et al., 2011; Quinlan, 2013; Montaville et al., 2014).

Synergistic promotion of actin assembly by Spire and formin proteins has been implicated in driving

a variety of processes ranging from vesicle trafficking to DNA repair in the nucleus (Pfender et al., 2011;

Schuh, 2011; Montaville et al., 2014; Belin et al., 2015). In these systems, membrane-associated Spire

proteins nucleate actin filaments, which are then further polymerized by formin proteins, ultimately

leading to actin-dependent translocation. Given these characteristics of Spire proteins, we set out to

investigate whether any Spire proteins could be involved in helping promote INF2- and actin-dependent

constriction and division of mitochondria at ER-mitochondria association zones.

Vertebrates have two known Spire genes, Spire1 and Spire2. Each Spire protein contains highly

conserved domains with specific capabilities, including: four actin-monomer binding WH2 domains

necessary for nucleating actin filaments; an mFYVE domain that binds to intracellular membranes and

facilitates oligomerization (Kerkhoff, 2011; Dietrich et al., 2013); and an N-terminal KIND domain that

serves to bind to and regulate formin proteins (Bosch et al., 2007; Quinlan et al., 2007; Pechlivanis

et al., 2009; Kerkhoff, 2011; Pfender et al., 2011; Vizcarra et al., 2011; Zeth et al., 2011; Quinlan,

2013; Montaville et al., 2014). Although no Spire proteins have been shown previously to localize to

mitochondria or the ER (Dietrich et al., 2013), here we report a previously uncharacterized alternate

eLife digest Mitochondria are structures within cells that provide the energy to power many

biological processes that are essential for complex life. These structures are also highly dynamic and

go through cycles of fission (in which a single mitochondrion splits in two) and fusion (in which two

mitochondria merge into one). These processes both maintain the correct number of mitochondria in

a cell and remove damaged ones, and defects in either can result in many diseases.

Previous research had shown that mitochondria are in close contact with another cellular structure

called the endoplasmic reticulum. The points of contact mark the sites where mitochondria undergo

fission, as small tubes of the endoplasmic reticulum wrap around, and then constrict, to split

a mitochondrion.

Other recent work revealed that a protein called INF2 is anchored on the endoplasmic reticulum

where it promotes mitochondrial constriction. This protein builds actin subunits into long filaments

that provide the force for constriction. However, it was not clear how INF2 became active, and

whether there are proteins on mitochondria that interact with INF2 or actin.

Manor, Bartholomew et al. have now used a combination of microscopy-based methods and

biochemical analysis to discover that a mitochondrial protein called Spire1C performs all of these

roles. Spire1C is found on the outer membrane of mitochondria; it interacts with INF2 to drive the

formation of actin filaments that constrict mitochondria. These results suggest that Spire1C bridges

the endoplasmic reticulum with the network of actin filaments. Further experiments then showed

that increasing Spire1C levels in cells resulted in the mitochondria becoming fragmented due to

increased constriction. On the other hand, depleting Spire1C had the opposite effect and caused

mitochondria to become unusually elongated. Following on from this work, the next challenge is to

see if Spire1C is used differently or similarly in the different processes that involve mitochondrial

fission.

DOI: 10.7554/eLife.08828.002
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splice-isoform of Spire1 (named Spire1C) that localizes to mitochondria, promotes actin assembly on

mitochondrial surfaces, and interacts with ER-anchored INF2 to regulate mitochondrial constriction

and division. Our results support a model where Spire1C and INF2 coordinately drive actin- and

ER-dependent mitochondrial division. They also reveal that Spire1C directly links mitochondria to both

the actin cytoskeleton and the ER.

Results

Spire1C’s previously uncharacterized alternate exon, ExonC, is highly
conserved
We identified and characterized a novel alternate splice-isoform of Spire1 that contains KIND and

WH2 domains common to all Spire proteins, as well as a previously uncharacterized unique 58 amino

acid alternate exon sequence (ExonC) (Figure 1A and see ‘Materials and methods’ and

Figure 1—figure supplements 1–3 for details on Spire1C cloning, probe generation, and sequence

information). Because of its alternative ExonC sequence, we named the Spire1 isoform Spire1C

(Figure 1A). After determining that Spire1C mRNA was present in multiple mouse tissues

(Figure 1—figure supplement 3), we examined its presence and conservation among species. Using

the UCSC Genome Browser, we searched for additional DNA or mRNA sequences that contain

Spire1C (Kent et al., 2002). When compared to mouse, we found striking identity in ExonC for rat,

rabbit, human, dog, elephant, opossum, platypus, and chicken. It is not found in the annotated

zebrafish sequence. Compared to our amplified mouse sequence of 58 amino acids, human ExonC

differs by 2 residues (96% identical), platypus by 8 residues (86% identical), and chicken by 12 residues

(79% identical). Sequence homology is strongest among mammals, but chicken maintains

conservation that is unlikely to be solely due to chance. Conservation among species extends

beyond the coding exon and into the upstream and downstream intronic regions of the gene,

stretching ∼150 bases in the 3′ direction (data not shown). These conserved extensions are likely

involved in splicing regulation of the exon. The high level of conservation within and surrounding

ExonC suggests that its role is indispensible for the health of the organism.

Spire1C’s ExonC is necessary and sufficient for localization to
mitochondria
When cells were transfected with a myc-tagged Spire1C construct, the protein showed extensive co-

distribution with the mitochondrial marker mitoRFP (Figure 1B, myc-Spire1C). A polyclonal antibody

generated against a peptide containing the unique 58 amino acids in ExonC (Figure 1B and

Figure 1—figure supplements 1–3) also showed extensive mitochondria-specific labeling within cells

(Figure 1B, α−ExonC) (see Figure 1—figure supplements 2, 3 and ‘Materials and methods’ for

additional information on α-ExonC). Testing the role of ExonC in mitochondrial targeting of Spire1C,

we found that a GFP-tagged ExonC fusion protein robustly localized to mitochondria in expressing

cells (Figure 1B, GFP-ExonC). By contrast, a myc-tagged Spire1C construct lacking ExonC never

showed specific mitochondrial localization (Figure 1B, myc-Spire1ΔC). These results suggest that

Spire1C is an endogenously expressed mitochondria-associated protein that targets to mitochondria

via its ExonC domain.

Spire1C localizes to the mitochondrial outer membrane with its formin-
and actin-binding domains facing the cytoplasm
To examine whether Spire1C distributes on the surface or interior of mitochondria we compared the

distribution of GFP-ExonC (marking Spire1C) with mitoRFP (marking the mitochondrial matrix) using

structured illumination microscopy (SIM), which gives a twofold resolution improvement over

conventional confocal imaging (Allen et al., 2014). GFP-ExonC labeling on mitochondria surrounded

that of mitoRFP labeling (Figure 2A), suggesting Spire1C localizes to the periphery of mitochondria,

most likely on the mitochondrial outer membrane.

To confirm Spire1C’s mitochondrial outer membrane localization, we employed a fluorescence

protease protection (FPP) assay (Lorenz et al., 2006), which can determine a protein’s membrane

topology (Figure 2B). GFP was fused to the N-terminus of Spire1C (GFP-Spire1C), the N-terminus of

ExonC (GFP-ExonC), or to the C-terminus of ExonC (ExonC-GFP) (Figure 2C). The constructs were
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Figure 1. The Spire1 alternate exon ExonC is necessary and sufficient for localization to mitochondria. (A) Full length

Spire1C domain structure: The number ranges indicate the amino acid regions of the conserved domains probed in

this study. (B) Spire1C localizes to mitochondria. myc-Spire1C: U2OS cells cotransfected with myc-Spire1C and

mitoRFP show robust localization of myc-Spire1C to mitochondria. α-ExonC: U2OS cells stained with an antibody

raised against ExonC (α-ExonC) and expressing mitoRFP show endogenous Spire1C labeling on mitochondria.

Figure 1. continued on next page
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then co-expressed in cells with OMI-mCherry, a mitochondrial intermembrane space (IMS) protein

(Muñoz-Pinedo et al., 2006). Thereafter, the plasma membrane of the cells was gently permeabilized

with digitonin, followed by treatment with trypsin to extinguish cytoplasmic GFP fluorescence. Because

mitochondrial membranes are not permeabilized by digitonin treatment, we reasoned that only if the

fluorescent tag from these constructs faced the cytoplasm would their fluorescence be abolished by the

trypsin. Both GFP-Spire1C and GFP-ExonC lost nearly all their fluorescence within 60 seconds of trypsin

treatment. By contrast, fluorescence from ExonC-GFP was protected, similar to that seen for co-

expressed OMI-mCherry, which as a mitochondrial IMS protein should be insensitive to trypsin (Muñoz-

Pinedo et al., 2006) (Figure 2D; Videos 1–3). These results suggest that theWH2 and KIND domains of

Spire1C face the cytoplasm (since both reside N-terminal to ExonC) (Figure 2C), a topology where they

could participate in formin-binding and actin-nucleation activity. The data further suggest that the C-

terminus of ExonC is not exposed to the cytoplasm. This raises the possibility that ExonC is embedded

in the outer membrane, either as a transmembrane or hairpin protein.

In support of this notion, transmembrane domain prediction software (Claros and von Heijne,

1994) indicated that residues 26–46 within ExonC form an α-helix characteristic of prokaryotic

transmembrane domains. Secondary structure prediction software PHYRE (Kelley and Sternberg,

2009) also predicted a second α-helix within ExonC (Figure 1—figure supplement 3). Interestingly,

when we expressed a full-length Spire1C construct with GFP fused to the C-terminus (Spire1C-GFP),

the protein remained mostly cytoplasmic and no longer properly localized to mitochondria (data not

shown). The protein also rapidly escaped cells treated with digitonin, suggesting it was not able to

target efficiently to mitochondria. Taken together, our data suggests that Spire1C is a mitochondrial

outer membrane protein, possibly with a hairpin conformation given ExonC’s two predicted α-helix
domains (Figure 1—figure supplement 3).

We next performed photobleaching experiments to investigate the dynamics of Spire1C’s

association with mitochondrial membranes. Photobleaching of a portion of a mitochondrial element

that expressed GFP-Spire1C resulted in rapid recovery of fluorescence, with replenishment arising first

in regions close to the bleach site and later at regions further away (Figure 2E and Figure 2—figure

supplement 1), similar to that seen for GFP-tagged proteins that feely diffuse along membranes (Cole

et al., 1996). In contrast, very little recovery during the same time period occurred when an entire

mitochondrial element expressing GFP-Spire1C was photobleached (Figure 2F). Thus, Spire1C

appears to diffuse laterally along mitochondrial membranes, rather than rapidly bind and dissociate

from the membrane, further supporting the idea of Spire1C being a mitochondrial outer membrane

protein.

Spire1C promotes actin assembly on mitochondrial surfaces
Given that Spire proteins can nucleate actin via their highly conserved WH2-repeat domain (Quinlan

et al., 2005; Loomis et al., 2006; Salles et al., 2009), we next investigated whether overexpression

of Spire1C promotes actin assembly on mitochondria. In non-transfected cells, only low levels of actin

Figure 1. Continued

GFP-ExonC: U2OS cells cotransfected with GFP-ExonC and mitoRFP show robust targeting of GFP-ExonC to

mitochondria. myc-Spire1ΔC: U2OS cells cotransfected with myc-Spire1ΔC and mitoRFP show no specific targeting

of myc-Spire1ΔC to mitochondria. All cells were fixed and primary antibodies were counterstained with Alexa-488

secondary antibody before imaging with confocal fluorescence microscopy. Scale bars: 10 μm. Inserts are

magnifications of the boxed regions.

DOI: 10.7554/eLife.08828.003

The following figure supplements are available for figure 1:

Figure supplement 1. Construction of the complete Spire1C protein sequence as explained in detail in the

‘Materials and methods’.

DOI: 10.7554/eLife.08828.004

Figure supplement 2. Constructs used to probe Spire1 function.

DOI: 10.7554/eLife.08828.005

Figure supplement 3. Spire1C contains a previously uncharacterized alternate exon of 58 amino acids.

DOI: 10.7554/eLife.08828.006
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Figure 2. Spire1C localizes to the mitochondrial outer membrane with its formin and actin binding domains facing

the cytoplasm. (A) ExonC localizes to the peripheral region of mitochondria. Left: structured iIllumination

microscopy (SIM) image of a U2OS cell transfected with GFP-ExonC and mitoRFP reveals localization of GFP-ExonC

to the periphery of mitochondria. Right: Magnification of boxed region on left. The insert on the lower right corner is

Figure 2. continued on next page
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co-localized with mitochondria, without any apparent specificity (Figure 3 and Figure 3—figure

supplement 1, control). Upon Spire1C overexpression, however, actin accumulated to high levels

specifically on mitochondria (Figure 3 and Figure 3—figure supplement 1, Spire1C overexpression).

This actin enrichment on mitochondrial surfaces

was not dependent on Spire’s formin-binding

KIND domain, since overexpression of Spire1C

lacking the KIND domain (Spire1CΔKIND) still

induced actin enrichment on mitochondrial sur-

faces (Figure 3, Spire1CΔKIND overexpression).

In contrast, actin enrichment on mitochondria was

muted upon overexpression of Spire1C mWH2

(Figure 3 and Figure 3—figure supplement 1,

Spire1C mWH2 overexpression), which contains

mutations in its WH2 domains that block Spire-

mediated actin nucleation (Loomis et al., 2006;

Salles et al., 2009) (see ‘Materials and methods’).

These results demonstrated that Spire1C pro-

motes actin assembly on mitochondria, most

likely through Spire1C’s ability to nucleate actin

filaments.

Spire1C modulates mitochondrial
fission via its formin-binding KIND
and actin-nucleating WH2-repeat
domains
Given that actin assembly has been shown to play

an important role in regulating mitochondrial

fission (De Vos et al., 2005; DuBoff et al., 2012;

Korobova et al., 2013, 2014; Hatch et al., 2014;

Li et al., 2015), the observation that Spire1C

Figure 2. Continued

a fluorescence intensity linescan of the rectangular boxed region indicating the inversely related profiles of GFP-

ExonC vs mitoRFP. Scale bar: 10 μm. (B) Illustration of the principle of the fluorescence protease protection (FPP)

assay performed on mitochondrial outer membrane (MOM) proteins. If a fluorescent protein tag faces the cytoplasm

(green circle), it is degraded by trypsin and its fluorescence is depleted. If the protein tag faces the interior of the

mitochondria (blue triangle), it is protected from trypsin in the cytoplasm, and thus its fluorescence remains after

trypsin addition. An intermembrane space (IMS) marker, OMI-mCherry, serves as a control to verify that the

mitochondrial outer membrane has not been permeabilized by the digitonin treatment, and furthermore to confirm

that trypsin is not degrading proteins in the IMS. (C) Schematic of the constructs used in our FPP assays. (D) Cells

cotransfected with OMI-mCherry and GFP-Spire1C (N-terminal GFP tag, left) or GFP-ExonC (N-terminal GFP-tag,

middle) were treated with 20 μM digitonin and 4 mM trypsin. In both cases OMI-mCherry fluorescence remained,

whereas the N-terminal GFP tags were mostly depleted within 60 s after trypsin treatment. In contrast, in cells

transfected with ExonC-GFP (C-terminus GFP tag), GFP fluorescence remains unchanged after 60 s of trypsin

treatment. Scale bar: 10 μm. (E) GFP-Spire1C laterally diffuses along the mitochondrial outer membrane. A small

region of a mitochondrion labeled with GFP-Spire1C was photobleached (white boxed region). The rapid,

directional recovery from the unbleached region into the bleached region (see also Figure 2—figure supplement 2)

suggests GFP-Spire1C is stably associated with and laterally diffuses along the mitochondrial outer membrane.

(F) GFP-Spire1C does not readily exchange with the cytoplasm or neighboring mitochondria since photobleaching

of an entire mitochondrion resulted in very low fluorescence recovery over the same period of time as in (E).

Scale bar: 1 μm.

DOI: 10.7554/eLife.08828.007

The following figure supplement is available for figure 2:

Figure supplement 1. GFP-Spire1C laterally diffuses on the mitochondrial outer membrane.

DOI: 10.7554/eLife.08828.008

Video 1. A U2OS cell coexpressing GFP-Spire1C

(N-terminus tag) and OMI-mCherry displays rapid loss

of GFP fluorescence signal after the addition of 10 μM
digitonin and 4 mM trypsin, whereas mCherry fluores-

cence persists, indicating that trypsin is degrading the

GFP tag on the N-terminus of Spire1C in the cytoplasm,

but not OMI-mCherry, which resides in the mitochondria

intermembrane space (IMS). Scale bar: 10 μm.

DOI: 10.7554/eLife.08828.009
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localizes to mitochondria and promotes actin assembly on mitochondrial surfaces raised the possibility

that Spire1C plays a role in mitochondrial fission. To test this directly, we assessed the effect of Spire1C

overexpression, mutation and depletion on mitochondrial morphology, length, and fission. While all cells

in all conditions in this study displayed a combination of fragmented and tubular mitochondria,

overexpression of Spire1C resulted in a significant shift towards fragmented mitochondria compared to

control cells (Figure 4A, +Spire1C). In contrast, overexpression of Spire1C mWH2 or Spire1CΔKIND

resulted in a shift towards tubular mitochondria (Figure 4A). Depletion of Spire1C using shRNA also

resulted in a shift towards tubular mitochondria (Figure 4B). To quantify these changes, we measured

mitochondrial lengths in each of these conditions, and found that Spire1C overexpression resulted in

shorter mitochondria on average, whereas mutation or depletion of Spire1C resulted in longer

mitochondria (Figure 4C, left graph, and Figure 4—figure supplement 1), resembling the effect of

disrupting mitochondrial fission due to the depletion of Drp1 or INF2 from cells (Bleazard et al., 1999;

Labrousse et al., 1999; Wakabayashi et al., 2009; Korobova et al., 2013, 2014; Hatch et al., 2014).

To determine whether these morphological changes were a result of altered mitochondrial fission

dynamics, we counted the number of mitochondrial fission events in each of these conditions. We found

that fission events increased in frequency when cells were overexpressing Spire1C, whereas over-

expression of Spire1C mWH2 or Spire1CΔKIND decreased the frequency of fission events (Figure 4C,

right graph). Similarly, shRNA-mediated knockdown of Spire1C decreased the frequency of fission events

(Figure 4C, right graph). Taken together, our results show Spire1C promotes mitochondrial fission via

Spire1C’s actin-nucleating and formin-binding capabilities.

Disrupting the Spire1C KIND domain decreases ER-mitochondria
overlaps
Since ER tubules have been implicated in mitochondrial constriction and division (Friedman et al., 2011;

Korobova et al., 2013; Murley et al., 2013; Korobova et al., 2014), we investigated whether Spire1C

influences ER-mitochondria association. Upon overexpression of Spire1C or Spire1C mWH2, we

observed no significant change in ER-mitochondrial overlap or crossover sites of ER tubules and

mitochondria compared to control cells (Figure 5A,B). However, in cells overexpressing Spire1CΔKIND,

Video 2. A U2OS cell coexpressing GFP-ExonC

(N-terminus tag) and OMI-mCherry displays rapid loss

of GFP fluorescence signal after the addition of 10 μM
digitonin and 4 mM trypsin, whereas mCherry fluores-

cence persists, indicating that trypsin is degrading the

GFP tag on the N-terminus of Spire1C in the cytoplasm,

but not OMI-mCherry, which resides in the mitochondria

IMS. Scale bar: 10 μm.

DOI: 10.7554/eLife.08828.010

Video 3. A U2OS cell coexpressing ExonC-GFP

(C-terminus tag) and OMI-mCherry displays no

loss of GFP fluorescence signal after the addition

of 10 μM digitonin and 4 mM trypsin, indicating

the GFP tag on the C-terminus of ExonC is

protected within the mitochondrial lumen.

Scale bar: 10 μm.

DOI: 10.7554/eLife.08828.011
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Figure 3. Spire1C promotes actin assembly on mitochondrial surfaces. Overexpression of Spire1C causes actin

accumulation on mitochondria. Control: SIM image of a Cos7 cell expressing mitoEmerald and stained with phalloidin-

568 to visualize actin shows low amounts of overlap between mitochondria and actin (Mander’s: 0.43 ± 0.020, ncells = 26).

Spire1C overexpression: A Cos7 cell expressing mitoEmerald and overexpressing myc-Spire1C and stained with

phalloidin-568 reveals significantly increased actin accumulation on mitochondria (Mander’s: 0.64 ± 0.066, ncells = 19,

p < 0.05) compared to control cells. GFP-Spire1CΔKIND: A Cos7 cell overexpressing the formin-binding deficient

GFP-Spire1CΔKIND stained with phalloidin-568 reveals significant accumulation of actin on mitochondria compared to

control cells (Mander’s: 0.55 ± 0.017, ncells = 18, p < 0.05). A Cos7 cell overexpressing GFP-Spire1C mWH2 displays no

increased accumulation of actin (Mander’s: 0.41 ± 0.040, ncells = 15, p = 0.32) compared to control cells. Scale bar: 5 μm.

DOI: 10.7554/eLife.08828.012

The following figure supplement is available for figure 3:

Figure supplement 1. Spire1C promotes actin assembly near mitochondria in a WH2-dependent fashion.

DOI: 10.7554/eLife.08828.013

Manor et al. eLife 2015;4:e08828. DOI: 10.7554/eLife.08828 9 of 27

Research article Cell biology

http://dx.doi.org/10.7554/eLife.08828.012
http://dx.doi.org/10.7554/eLife.08828.013
http://dx.doi.org/10.7554/eLife.08828


Figure 4. Spire1C promotes mitochondrial fission via its formin-binding KIND and actin-nucleating WH2 domains.

(A) U2OS cells overexpressing Spire1C display shorter mitochondria (second panel, 2.2 ± 0.5 μm, nmitochondria = 211,

ncells = 14, p < 0.0001), whereas cells overexpressing Spire1C mWH2 (third panel, 6.2 ± 1.52 μm, nmitochondria = 332,

Figure 4. continued on next page
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we observed a significant decrease in ER-mitochondria overlap, as well as a decrease in the number of

ER tubules crossing over mitochondria (Figure 5A,B). This suggested that the KIND domain of Spire1C

might play a role in regulating the extent of ER-mitochondria intersections within cells, and that

Spire1CΔKIND-mediated disruption of mitochondrial fission (see Figure 4C, right panel) could be

due to a reduction in ER-mediated mitochondrial constriction in these cells (Friedman et al., 2011;

Korobova et al., 2013; Murley et al., 2013).

The Spire1C KIND domain directly interacts with ER-anchored INF2 to
promote mitochondrial fission
One way the KIND domain of Spire1C could affect ER-mediated mitochondrial division is by binding

to ER-anchored INF2. To test this possibility, we performed in vitro GST pull-down assays. We found

that the C-terminal half of INF2 (INF2-CT), but not the N-terminal half (INF2-NT), associated with

a GST-tagged Spire1C KIND domain, but not GST alone (Figure 6A). Addition of the N-terminal half

of INF2 (INF2-NT) inhibited the interaction between Spire1C KIND and INF2-CT in our GST pulldown

assays (Figure 6A; last well), suggesting that INF2’s ability to self-interact (Chhabra and Higgs,

2006; Ramabhadran et al., 2012, 2013) can regulate its association with Spire1C. We further

confirmed the interaction between Spire1C’s KIND domain and INF2 using fluorescence anisotropy

(Ramabhadran et al., 2013) (Figure 6B), which showed a specific interaction between Spire1C’s

KIND domain and INF2. Taken together, these data demonstrate that the Spire1C KIND domain

directly binds to INF2.

We next tested whether disrupting Spire1C’s interaction with INF2 inhibits mitochondrial fission.

To test this hypothesis, we first asked whether removing the KIND domain from Spire1C blocks the

increase in mitochondrial division associated with overexpressing a constitutively active INF2 mutant,

INF2 A149 (Korobova et al., 2013, 2014). Consistent with previous reports (Korobova et al., 2013,

2014), we found that overexpressing INF2 A149 resulted in significant shortening of mitochondria

(Figure 6C,E; A149 alone). Similarly, co-overexpression of INF2 A149 and Spire1C or INF2 A149 and

Spire1C mWH2 resulted in very short, fragmented mitochondria (Figure 6C,E +Spire1C or +Spire1C
mWH2). By contrast, overexpression of INF2 A149 and Spire1CΔKIND significantly disrupted INF2

A149-mediated mitochondrial fragmentation (Figure 6C, +Spire1CΔKIND). These results suggest

that while Spire1C actin-nucleating activity may be unnecessary for mitochondrial fission when INF2 is

constitutively active, INF2 binding to the Spire1C KIND domain is necessary for INF2 to maximally

induce mitochondrial fission. In further confirmation of the hypothesis that Spire1C and INF2 jointly

work to drive mitochondrial fission, we found that siRNA-mediated knockdown of INF2 disrupted

Spire1C-mediated upregulation of mitochondrial fission (Figure 6D). Taken together, the results

suggest that Spire1C interacts with INF2 via Spire1C’s KIND domain, and that this interaction

promotes mitochondrial fission.

Figure 4. Continued

ncells = 15, p < 0.0001) or Spire1CΔKIND (fourth panel, 9.0 ± 1.50 μm, nmitochondria = 232, ncells = 16, p < 0.0001)

display longer, more tubulated mitochondria compared to control cells (first panel, 3.57 ± 0.45 μm,

nmitochondria = 322, ncells = 34). Scale bar: 10 μm. (B) Cells transfected with mitoEmerald (and neighboring

non-transfected cells) stained with α-ExonC (upper row) showed robust colocalization of mitoEmerald and α-ExonC,
with a mixture of tubulated and fragmented mitochondria. Cells cotransfected with Spire1 shRNA and

mitoEmerald with no detectable α-ExonC labeling (lower row) display long, tubulated mitochondria (6.1 ± 1.26 μm,

nmitochondria = 222, ncells = 17). All primary antibodies were counterstained with Alexa-568 secondary antibody.

Scale bar: 15 μm. (C) Left: Average mitochondrial lengths for control cells and cells overexpressing Spire1C, Spire1C

mWH2, Spire1 shRNA or Spire1CΔKIND. Right: Average number of mitochondrial fission events in one cell in

a timespan of 10 min for control (ncells = 17), Spire1C overexpressing (ncells = 10, p < 0.0001), Spire1C mWH2

overexpressing (ncells = 12, p < 0.0001), Spire1 knockdown (ncells = 25, p < 0.0001) and Spire1CΔKIND

overexpressing (ncells = 22, p < 0.0001) cells. At least 3 separate experiments were performed for all conditions.

Error bars represent standard error of the mean.

DOI: 10.7554/eLife.08828.014

The following figure supplement is available for figure 4:

Figure supplement 1. Distribution of mitochondrial lengths measured in each condition.

DOI: 10.7554/eLife.08828.015
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Spire1C promotes ER-mediated mitochondrial constriction in an
INF2-dependent fashion
Mitochondrial fission would be co-dependent on Spire1C and INF2 if Spire1C’s interaction with INF2

drives ER-mediated mitochondrial constriction. To test this hypothesis, we employed confocal

fluorescence imaging of ER and mitochondria to examine mitochondrial constriction sites in cells

co-expressing the ER marker Ii33-mCherry and different variants of Spire1C. Mitochondria constriction

Figure 5. Spire1CΔKIND overexpression reduces the amount of ER-mitochondria overlap. (A) Confocal images of

cells expressing Ii33-mCherry and overexpressing GFP-Spire1C (second row) or GFP-Spire1C mWH2 (third row), but

not GFP-Spire1CΔKIND (fourth row), display significant overlap of mitochondria with ER, similar to control cells

expressing mitoEmerald. The images on the right-hand side show a magnified view of the boxed region in the

merge image, with overlapping pixels in displayed in white. Scale bar: 15 μm. (B) Bar graph representing the average

number of ER-mitochondria intersections per cell. We were able to resolve an average of 14.3 ± 3.5 intersections in

control cells (ncells = 12). GFP-Spire1C overexpressing cells had 14.7 ± 1.93 (ncells = 15) ER-mitochondria intersections

per cell. GFP-Spire1C mWH2 expressing cells had an average of 14.7 ± 1.62 (ncells = 11) ER-mitochondria

intersections per cell. Spire1CΔKIND expressing cells had 6.8 ± 1.33 (ncells = 14, p < 0.05) ER-mitochondria

intersections per cell.

DOI: 10.7554/eLife.08828.016
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Figure 6. Spire1C and inverted formin 2 (INF2) directly interact and work together to regulate mitochondrial fission.

(A) INF2-CT directly binds to Spire1-KIND in vitro. GST pull-down assays in actin polymerization buffer, containing

combinations of the following: 20 μMGST or GST-Spire1 KIND bound to glutathione-sepharose beads; 1 μM INF2-CT;

and 10 μM INF2-NT. Co-incubation of the GST-Spire1 KIND domain pulls down INF2-CT (third to last lane), but not

INF2-NT (second to last lane). INF2-CT pulldown is inhibited by the addition of the INF2-NT (last lane). STDS lane

represents 0.2 μM INF2-CT. (B) Fluorescence anisotropy binding curve of purified INF2-CT (20 nM) labeled with

tetramethylrhodamine succinimide mixed with varying concentrations of Spire1 KIND or bovine serum albumin

reveals a direct interaction between Spire1 KIND and INF2-CT. (C) Cells overexpressing a constitutively active INF2

mutant (INF2 A149 alone, ncells = 16, nmitochondria = 232) display very short, fragmented mitochondria compared to

control cells (p < 0.0001). Cells overexpressing A149 and Spire1C (+Spire1C, ncells = 14, nmitochondria = 461) or

Spire1C mWH2 (+Spire1C mWH2, ncells = 20, nmitochondria = 377) similarly display very short mitochondria. In contrast,

cells overexpressing A149 and Spire1CΔKIND display longer, more tubulated mitochondria (+Spire1CΔKIND,

ncells = 18, nmitochondria = 379, p < 0.0001). (D) Cells overexpressing Spire1C and treated with scrambled siRNA

display shorter, more fragmented mitochondria (+scramble siRNA, ncells = 20, nmitochondria = 434, p < 0.05).

Figure 6. continued on next page
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was visible at sites of ER-mitochondria crossover slightly more frequently in cells overexpressing

Spire1C compared to cells not overexpressing the construct (Figure 7A,B, Spire1C, see arrows for

ER-mediated mitochondrial constrictions, and arrowheads for ER-mitochondria intersections that didn’t

result in constrictions). Notably, cells overexpressing Spire1C mWH2 displayed significantly fewer

mitochondrial constrictions at ER-mitochondria intersections (Figure 7A,B, Spire1C mWH2). Similarly,

cells overexpressing Spire1CΔKIND showed a decrease in the frequency of constrictions at

ER-mitochondria intersections (Figure 7A,B, Spire1CΔKIND). RNA-mediated Spire1C knockdown also

resulted in decreased constrictions (Figure 7A,B, Spire1C shRNA). Finally, overexpressing Spire1C in

cells treated with INF2 siRNA showed a significant reduction in mitochondrial constrictions (Figure 7A,

B, INF2 siRNA + Spire1C). Taken together, our results suggest that Spire1C and INF2 work together

to promote mitochondrial division by driving ER-mediated mitochondrial constriction, and that this

process is dependent on Spire1C’s ability to nucleate actin filaments on mitochondrial surfaces, as well

as the ability for Spire1C and INF2 to interact via the Spire1C KIND domain.

Simulations indicate that pressure from actin polymerization and
actomyosin contraction forces are sufficient for driving mitochondrial
constriction
Given the above experimental results, we used in silico simulations to test a potential model in which

forces mediated by the actin cytoskeleton induce mitochondrial constriction. In this scenario, actin

filament polymerization within the gap between the ER tubule surrounding the mitochondria and the

mitochondrial outer membrane (Figure 8A) results in localized pressure that drives mitochondrial

constriction to diameters required for Drp1 helix formation (Korobova et al., 2013). This pressure

could originate either from forces exerted by actin polymerization against the mitochondrial outer

membrane (Korobova et al., 2013), or by myosin-II dimer mediated contraction of actin filaments

lying between the ER and mitochondrial membranes (Hatch et al., 2014; Korobova et al., 2014), or

by a concerted action of these two complementary mechanisms.

To substantiate this, we created a simulation of mitochondrial constriction in response to

a localized pressure generated by the above-mentioned mechanisms (Figure 8B, Figure 8—figure

supplement 1, and Figure 8—source data 1). We modeled the constriction site of the mitochondrial

outer membrane as a membrane tubule whose resistance to deformations is characterized by

a bending modulus of 8 × 10−20 Joules, typical for a lipid bilayer (Helfrich, 1973). The pressure

deforming the membrane tubule was applied in the middle of the constriction zone along a strip of

50-nm thickness, corresponding to that of a typical ER tubule, while the computed shapes of the

mitochondria constriction region corresponded to those of three different constriction events imaged

with electron tomography (Friedman et al., 2011) (Figure 8B). The computed pressure values

required for generation of these 3 degrees of mitochondrial constriction (Figure 8—figure

supplement 1 and Figure 8—source data 1) enabled us to calculate the numbers of polymerizing

actin filaments, Nf, or the tension, γm, which has to be developed within the actin contractile system.

Assuming that the force developed by one polymerizing actin filament is about 1 pN (Footer et al.,

2007), the estimated filament number, Nf, varies between 10–20. The actomyosin tension values, γm,
range from 2 to 3 pN. The obtained estimations for both Nf and γm are perfectly reasonable

physiologically, which supports the feasibility of the suggested mechanisms. Thus, our results and

model are fully consistent with previous studies suggesting that tightly regulated actin assembly at

ER-mitochondria intersection sites facilitates mitochondrial membrane scission by Drp1 (Friedman

et al., 2011; Korobova et al., 2013, 2014; Murley et al., 2013; Hatch et al., 2014; Li et al., 2015).

Discussion
A key event in the mitochondrion’s life cycle is its division into distinct mitochondrial elements. Prior

work studying this process demonstrated that division occurs at sites where ER wraps around

Figure 6. Continued

In contrast, cells overexpressing Spire1C and treated with INF2 siRNA display significantly longer, more tubulated

mitochondria (Spire1C + INF2 siRNA, ncells = 22, nmitochondria = 627, p < 0.0001). Scale bars: 5 μm. (E) Bar graph displaying

average mitochondria lengths for each of the conditions in this figure. Error bars represent standard error of the mean.

DOI: 10.7554/eLife.08828.017
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Figure 7. Spire1C overexpression enhances mitochondrial constriction via its WH2 and KIND domains in

cooperation with INF2. (A) Representative confocal images of U2OS cells expressing Ii33-mCherry in order to

visualize ER tubules crossing over mitochondria in cells expressing mitoEmerald (first row) or overexpressing

GFP-Spire1C (second row), GFP-Spire1C mWH2 (third row), GFP-Spire1CΔKIND (fourth row), or GFP-Spire1C while

Figure 7. continued on next page
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mitochondria (Friedman et al., 2011; Murley et al., 2013), with the ER providing a platform for actin

polymerization mediated by the ER-anchored formin INF2 (Korobova et al., 2013, 2014; Hatch et al.,

2014). This actin meshwork is proposed to provide the force that drives mitochondrial constriction

prior to Drp1-mediated mitochondrial division. Missing from this picture has been a molecular player

that regulates INF2-mediated actin polymerization, ensuring that polymerization occurs specifically at

ER-mitochondria contact sites to drive mitochondrial constriction and division. Here, we demonstrate

that Spire1C, a novel mitochondrial outer membrane protein, can serve this role by both binding to

INF2 as well as by acting as an actin-nucleator.

Spire proteins are membrane-binding actin-nucleators that interact with and regulate formin

proteins (Bosch et al., 2007; Quinlan et al., 2007; Pechlivanis et al., 2009; Pfender et al., 2011;

Schuh, 2011; Vizcarra et al., 2011; Quinlan, 2013). Given this, Spire proteins are potential

candidates for regulating the actin polymerization activity of INF2 on mitochondrial membranes. In

searching for such a protein, we identified a specific isoform of Spire1, Spire1C, which resides on

mitochondria and interacts with INF2. Spire1C is distinct from other Spire proteins in having

mitochondrial outer membrane localization. This localization is a result of Spire1C’s unique ExonC

domain, which serves as a mitochondria-targeting sequence. Spire1C undergoes lateral diffusion on

the mitochondrial outer membrane, and is oriented with its formin-binding and actin-nucleating

domains facing the cytoplasm. Spire1C promotes actin assembly on mitochondrial outer membranes;

when Spire1C is overexpressed a massive buildup of actin around mitochondria is observed. The actin

buildup is dependent on Spire1C’s actin-nucleating WH2 domain, but not its formin-binding KIND

domain. Therefore, Spire1C’s canonical actin-nucleating domain drives actin accumulation on

mitochondria independently of its interactions with formin proteins.

Given Spire1C’s ability to assemble actin filaments on mitochondrial membranes, we examined

whether modulating Spire1C’s activity could affect mitochondrial lengths or their division rates, and we

found that it can. Overexpressing Spire1C increases mitochondrial division rates while depleting

Spire1C has the opposite effect, causing mitochondria to become highly elongated. Because the

increased fission seen in cells overexpressing Spire1C depends not only on Spire1C’s actin-nucleating

WH2 domain but also its formin-binding KIND domain, we reasoned that Spire1C-mediated

mitochondrial fission also depended on formin proteins. Given INF2’s previously established role as

a formin protein involved in ER-mediated mitochondrial constriction and division (Korobova et al.,

2013, 2014; Hatch et al., 2014), we hypothesized that Spire1C could be working together with INF2.

We postulated that Spire1C could be promoting mitochondrial division by interacting with ER-anchored

INF2, in order to enable mitochondria to come into close proximity with the ER so that actin-nucleation

by Spire1C could enhance actin assembly mediated by INF2. Supporting this possibility, we found in

GST pulldown and fluorescence anisotropy assays that the Spire1C KIND domain directly binds to INF2.

In cells overexpressing Spire1C lacking its KIND domain-mediated INF2-binding activity (Spir-

e1CΔKIND) or its actin-nucleating activity (Spire1C mWH2), ER-mitochondria associations leading to

mitochondrial constrictions were significantly decreased. Moreover, overexpressing Spire1CΔKIND

prevented mitochondria from dividing in cells expressing a constitutively active INF2 mutant (INF2 A149)

Figure 7. Continued

treated with INF2 siRNA (fifth row). Arrows indicate ER-mitochondria intersection points associated with

mitochondrial constriction. Arrowheads indicate ER-mitochondria intersections not resulting in mitochondrial

constriction. Scale bar: 1 μm. (B) Bar graphs representing the average percentage of ER-mitochondria intersections

associated with mitochondrial constriction for each construct used. In cells expressing mitoEmerald, 55.2 ± 5.5%

(nintersections = 172, ncells = 12) of ER-mitochondria intersections appeared to result in mitochondrial constriction.

In GFP-Spire1C overexpressing cells, 71.5 ± 4.5% (nintersections = 221, ncells = 15, p < 0.05) of ER-mitochondria

intersections resulted in mitochondrial constriction. In GFP-Spire1C mWH2 overexpressing cells, 24.1 ± 2.4%

(nintersections = 162, ncells = 11, p < 0.01) of ER-mitochondria intersections appeared to result in mitochondrial

constriction. In Spire1C knockdown cells, 37.2 ± 5.7% (nintersections = 123, ncells = 11, p < 0.001) of ER-mitochondria

intersections appeared to result in mitochondrial constriction. In GFP-Spire1CΔKIND overexpressing cells, 29.5 ± 4.7%

(nintersections = 95, ncells = 14, p < 0.01) of ER-mitochondria intersections appeared to result in mitochondrial

constriction. In GFP-Spire1C overexpressing cells treated with INF2 siRNA, 27.5 ± 5.3% (nintersections = 178, ncells = 16,

p < 0.01) of ER-mitochondria intersections appeared to result in mitochondrial constriction.

DOI: 10.7554/eLife.08828.018
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that normally induces dramatic mitochondrial fission (Korobova et al., 2013, 2014). Finally, Spire1C

overexpression in cells lacking INF2 failed to induce mitochondrial fission.

All these observations suggest a model in which mitochondrial Spire1C and ER-anchored INF2

conspire to mediate mitochondrial constriction via actin filament assembly. In this scheme, Spire1C:

actin complexes on mitochondria associate with INF2 on the ER, acting together with other

ER-mitochondria tethering complexes (Rowland and Voeltz, 2012) to draw the two organelles

together. This results in the ER wrapping around the mitochondria. Once this occurs, actin filaments

Figure 8. Putative model for how mitochondrial Spire1C and ER-anchored INF2 could mediate mitochondrial

constriction via actin filament assembly. (A) Spire1C:actin complexes on mitochondria associate with INF2 on the ER.

Actin filaments nucleated by Spire1C are elongated by the actin polymerization activity of INF2. The actin filament

elongation activity exerts pressure on the mitochondrial outer membrane, thereby driving constriction of the latter.

Tethering complexes may play a role in maintaining association between ER and mitochondrial membranes. Myosin-II

dimers and the related contractile actin ring, which may also be involved in mitochondrial constriction, are not shown

for simplicity. (B) Computational results showing mitochondrial shapes resulting from deformation by constricting

pressure P developed by the actin polymerization and/or actin contractile based mechanisms (see also

Figure 8—figure supplement 1, Figure 8—source data 1, and ‘Materials and methods’ for more information).

The mitochondrial constriction site was modeled as a tubular membrane of about 680 nm length and with initial

radius R = 230 nm. The dark blue strip in the middle represents the 50 nm wide zone of the pressure application. The

images correspond to 3˚ of the mitochondria constriction characterized by cross-sectional radii r in the narrowest

place of 145 nm, 110 nm and 65 nm. The corresponding values of the pressure P, the required numbers of the

polymerizing actin filaments, Nf, and the required tensions in the actin contractile ring, γm, are presented in

Figure 8—figure supplement 1 and Figure 8—source data 1.

DOI: 10.7554/eLife.08828.019

The following source data and figure supplement are available for figure 8:

Source data 1. Specific values of the system parameters and the computational results for the three specific

extents of mitochondrial constriction presented in Figure 8, Figure 8—figure supplement 1, and discussed in

the main text.

DOI: 10.7554/eLife.08828.020

Figure supplement 1. Computational results of simulations of mitochondrial constriction mediated by actin

polymerization and actin constriction mechanisms.

DOI: 10.7554/eLife.08828.021
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nucleated by Spire1C are elongated by the actin polymerization activity of INF2, similar to the ‘rocket

launcher’ mechanism shown for other actin nucleating and formin proteins (Breitsprecher et al.,

2012). Because INF2 can both polymerize and sever actin filaments, a complex meshwork of actin

grows between the ER and mitochondria, which may be further impacted by myosin-II dimer

recruitment (Hatch et al., 2014; Korobova et al., 2014) as well as perhaps other actin-regulatory

proteins such as cofilin or Arp2/3 (Derivery et al., 2009; Liu et al., 2009; Li et al., 2015). The growing

actin meshwork between the ER and mitochondria then exerts pressure on the mitochondrial outer

membrane causing its constriction. Our computational modeling of this process confirmed that

polymerizing actin filaments from this meshwork has sufficient force to bend and constrict the

mitochondrial membrane once the filaments abut the mitochondria surface.

Clearly, further work is needed to clarify the mechanism by which Spire1C and INF2 facilitate

mitochondrial division. First, a better understanding of how Spire1C and INF2 interact with and regulate

one another’s activities during mitochondrial constriction is required. The relatively low affinity between

Spire1C’s KIND domain and INF2 detected in our assays, if applicable to living cells, is consistent with

Spire1C:INF2 dissociation once INF2 begins to elongate actin filaments. Second, as several proteins are

known to tether ER-mitochondrial membranes (Rowland and Voeltz, 2012), the role of these proteins

in promoting or disrupting Spire1C’s interaction with INF2 also needs to be studied. Such interactions

may underlie differences in the mode of mitochondrial division seen in cells undergoing apoptosis,

mitophagy, mitosis, or in response to toxins such as LLO from Listeria (Chan, 2012; Hoppins and

Nunnari, 2012; Youle and van der Bliek, 2012; Stavru et al., 2013). Finally, the precise organization of

the actin meshwork responsible for constricting mitochondria needs to be characterized at higher

resolution. This will help determine whether the actin meshwork constricts mitochondria by myosin-

mediated contraction, by elongating filaments pushing, or by a combination of both.

While we have focused on Spire1C’s role in mitochondrial constriction, the establishment of Spire1C

as a mitochondrial outer membrane protein suggests that Spire1C is optimally positioned to serve as

a molecular hub that links mitochondrial dynamics to the actin cytoskeleton as well as to the ER. While

our appreciation of the role of actin in mitochondrial division is rapidly growing (De Vos et al., 2005;

Korobova et al., 2013, 2014; Hatch et al., 2014; Li et al., 2015), there are other important functions

for actin in mitochondrial dynamics, such as mitochondrial motility in neurons (Hollenbeck and Saxton,

2005; Pathak et al., 2010), mitochondrial partitioning prior to cell division in fibroblasts (Quintero

et al., 2009; Rohn et al., 2014), and perhaps also the partitioning of mitochondrial DNA (Boldogh

et al., 2003, 2004; Reyes et al., 2011). This list is almost certainly not exhaustive; there may yet be

other known and unknown roles for the actin cytoskeleton in mitochondrial biology, and vice versa.

Interestingly, Spire1C directly interacts with the tail domain of myosin Va (data not shown), an actin-

binding motor protein that has been shown to be involved in both mitochondrial and ER movement

in neurons (Wagner et al., 2011). In other cellular systems myosin Vb, Rab11a, and Spire

proteins cooperate to drive actin-based vesicle movements and dynamics (Schuh, 2011; Montaville

et al., 2014)—perhaps similar mechanisms exist for mitochondrial movements. Along these lines,

it is interesting to note that Rab11a has also been implicated in mitochondrial dynamics (Landry

et al., 2014)—exploring these findings in the context of Spire1C function may provide new insight

towards mitochondrial movements and dynamics, and perhaps the relationship between actin-

dependent motility and actin-dependent fission. Finally, the recent discovery of a role for the ER in

mediating endosomal constriction and division raises the possibility that endosomal isoforms of Spire

(Kerkhoff, 2006; Liu et al., 2009) are playing a similar role in promoting ER/actin/INF2-mediated

endosomal fission. In fact, results from previous studies suggest that overexpression of the endosomal

Spire2 protein lacking its KIND domain may result in endosome elongation (Dietrich et al., 2013), which

would be analogous to what we have observed for Spire1CΔKIND overexpression and mitochondria.

In conclusion, our identification and characterization of Spire1C as an ER- and actin-bindingmitochondrial

outer membrane protein opens the door for novel avenues towards understanding the regulation of myriad

roles of actin, mitochondria, and the ER in cellular function and disease (Rappold et al., 2014).

Materials and methods

Cell culture and transfections
U2OS and Cos-7 cells were purchased from ATCC (Manassas, VA). U2OS cells stably expressing GFP-

INF2 was described in Chhabra et al. (2009). All cells were grown in DMEM (Invitrogen, Carlsbad, CA)
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with 10% fetal bovine serum. For imaging, fibronectin coated coverslips ranging between 168 and 172 μm
(for fixed cell imaging) or #1.5 LabTek chambers (for live cell imaging) were incubated with 10 μg/ml of

fibronectin in PBS at 37˚C for 30 min prior to plating the cells. Transient transfections were performed

using FuGene 6 (Promega, Madison, WI) according to the manufacturer’s recommendations. For

overexpression experiments, 1 μg of DNA per coverslip was used. For minimal perturbation while imaging

ER and mitochondria, 50 ng of DNA was used as described in Friedman et al. (2011). For siRNA

transfections, cells were treated as in Korobova et al. (2013). Briefly, U2OS cells stably expressing

GFP-INF2 (Chhabra et al., 2009) were plated on 6-well plates, treated with 63 pg of siRNA per well,

and analyzed 72 hr post-transfection. siRNA or shRNA-mediated knockdown was confirmed by loss

of GFP-INF2 or GFP-Spire1C fluorescence.

Plasmids and siRNA oligonucleotides
Ii33-mCherry was a generous gift from P Satpute (National Institutes of Health, Bethesda, MD).

MitoEmerald and mitoRFP were gifts from A Rambold (National Institutes of Health, Bethesda, MD).

Spire1C was amplified from mouse brain cDNA using the sequence of NM_194355 as a reference. We

expected to obtain a sequence yielding protein corresponding to GI 37595748, however, it contained

an additional 58 residues (ExonC). Thorough examination of all available mammalian Spire1 isoforms

revealed at least 3 alternatively-spliced exons, which we refer to as exons A (majority of KIND domain),

B (protein sequence AVRPLSMSHSFDLS), and C (protein sequence VPRITGVWPRTPFRPLFSTIQT

ASLLSSHPFEAAMFGVAGAMYYLFERAFTSRWKPSK).

To obtain a full-length Spire1C construct, we amplified the mouse Spire1 gene AK129296, which

contains the full KIND domain through the first 3 WH2 domains, along with NM_194355, which contains

a partial KIND domain and ExonC without Exon B. A series of amplifications of partial gene sequences

was then performed to obtain versions of mouse Spire1 that were ± each of exons A, B, and C

(Figure 1—figure supplement 1). Each variant of the Spire1 gene was cloned into the AscI and PacI

sites of modified pCS2+ vectors containing epitope tag sequences adjacent to the multiple cloning site,

creating Spire1C constructs with either N-terminal 6x-myc or fluorescent protein tags. For the FPP assay

and knockdown experiments, human Spire1C ORF XM_005258122 (acquired from Genscript USA Inc.,

Piscataway Township, NJ) was cloned into the pEGFP-C1/pmApple-C1 and pEGFP-N1/pmApple-N1

vectors (Clontech) using the XhoI-BamHI and NheI-AgeI restriction sites, respectively. A nucleation-

deficient mutant of Spire1C (Spire1C mWH2) was generated by utilizing internal PstI and AfeI restriction

sites in the Spire1C gene. A sequence of 822 nucleotides of the Spire1C gene between internal PstI and

AfeI sites was synthesized (Genscript USA Inc.) that contained alanines in place of the key hydrophobic

residues required for nucleation in all four WH2 domains (Quinlan et al., 2005; Loomis et al., 2006;

Quinlan et al., 2007). Insertion of the alanine-mutated WH2 domains was confirmed with DNA

sequencing. All primers used are shown below along with the WH2 mutant insertion.

Primers for spire1 gene amplification and plasmid construction

Primer 1 GCGCGGCGCGCCATGGAACTGCATACATTTCTGACCAAAATTAAGAG
Primer 2 GCGCTTAATTAATCAGATCTCGTTGATAGTCCGTTCTGAAG
Primer 3 GAGCAGGCGCGCCATGGCCAATACCGTGGAGGCTG
Primer 4 GGCGTTAATTAATCTAGTCTGCTCCGTCTAATTTCTTC
Primer 5 GACGGCGCGCCATGGCGCAGCCCTCCAG
Primer 6 GGCGTTAATTAATCTAGTCTGCTCCGTCTAATTTCTTC
Primer 7 CCATGTGCTCCAGGAAGAAGCC
Primer 8 CTGCCTTCCAAGCCATACTCTACTCTAC

All primers are 5′ to 3′. AscI or PacI restriction sites are underlined.

WH2 mutant insertion sequence

CGAGGCTGCAGATGAAGGCCCGGAAGATGAAGACGGAGAG

AAGAGAAGCATCTCAGCCATCCGGTCCTATCAGGACGTTATGAAG

ATCTGTGCTGCTCACCTCCCAACTGAGTCGGAGGCACCCAATCAT

TATCAGGCAGTATGTCGGGCCCTGTTCGCAGAAACCATGGAACTG

CATACATTTCTGACCAAAATTAAGAGTGCAAAGGAGAACCTTAAG

AAGATTCAAGAAATGGAAAAGGGTGATGAATCTAGCACAGATCTG

GAGGACCTGAAAAATGCAGACTGGGCCCGGTTCTGGGTACAAGCG
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GCGAGGGATTTGCGAAATGGGGTAAAAGCTAAGAAAGTCCAGCAG

CGGCAGTACAACCCTCTGCCCATTGAGTACCAACTGACCCCTTAT

GAGATGGCCGCGGACGACATTCGGTGCAAAAGATACACCGCGAGA

AAAGTAATGGTAAATGGTGACGTCCCCCCTCGGTTGAAAAAGAGT

GCTCATGAGGTCGCCGCTGACTTTATCAGATCAAGACCCCCTGCA

AATCCAGTTTCAGCCAGAAAACTGAAACCAACCCCACCACGGCCA

CGGAGCCTCCATGAAAGAGCAGCAGAAGAAATTAAAGCAGAAAGA

AAGGCTCGGCCTGTGTCACCAGAAGAAATTAGACGGAGCAGACTA

GCAGTGCGGCCACTTAGCATGTCTCACAGTTTTGACTTGTCAGAT

GTCACTACGCCAGAATCTCCAAAGAATGTTGGAGAATCATCTATG

GTGAATGGAGGCTTAACATCTCAAACAAAAGAAAATGGGCTGAGC

GCTGCCCAGCAGGGGTC

The entire amino acid sequence of Spire1C is below

MAQPSSPGGEGPQLGAAGGPRDA

LSLEEILRLYNQPINEEQAWAVCFQCCGSLRAAAARRQPHRRVRSAAQIRVWRDGAVTLAPAAAAAAE

GEPPPASGQLGYSHCTETEVIESLGIIIYKALDYGLKENEERELSPPLEQLIDQMANTVEADGSKDEGYEAAD

EGPEDEDGEKRSISAIRSYQDVMKICAAHLPTESEAPNHYQAVCRALFAETMEL

HTFLTKIKSAKENLKKIQEMEKGDESSTDLEDLKNA

DWARFWVQVMRDLRNGVKLKKV

QQRQYNPLPIEYQLTP

YEMLMDDIRCKRYTLRKV

MVNGDVPPRLK

KSAHEVILDFIRSRPPLNPV

SARKLKPTPPRPRS

LHERILEEIKAERKLRPV

SPEEIRRSRL

AVRPLSMSHSFDLS

DVTTPESPKNVGESSMVNGGLTSQTKENGLSAAQQGSAQRKRLLKAPTLAELDSSDSEEEKSLHKSTSS

SSASPSLYEDPVLEAMCSRKKPPKFLPISSTPQPERRQPPQRRHSIEKETPTNVRQFLPPSRQSSRSL

VPRITGVWPRTPFRPLFSTIQTASLLSSHPFEAAMFGVAGAMYYLFERAFTSRWKPSK

EEFCYPVEC

LALTVEEVMHIRQVLVKAELE

KYQQYKDVYTA

LKKGKLCFCCRTRRFSFFTWSYTCQFCKRPVCSQCC

KKMRLPSKPYSTLPIFSLGPSALQRGESCSRSEKPSTSHHRPLRSIARFSTKSRSVDKSDEELQFPKELMED

WSTMEVCVDCKKFISEIISSSRRSLVLANKRARLKRKTQSFYMSSAGPSEYCPSERTINEI

KIND domain

WH2 domains (mutated to alanine to make nucleation deficient)

Alternate exon B

Alternate ExonC

Spire box

mFYVE domain

Spire1 shRNA constructs were generated by cloning the sequences into Clontech’s pSingle-tTS-shRNA

vectors using the HindIII/XhoI restriction sites. The sequences cloned into the vector to knockdown

Spire1C were 5′-TCGAGGGATTAGACGTAGCAGATTATTCAAGAG ATAATCTGCTACGTCTAATCT

TTTTTACGCGTA-3′ (Spire1C 3′ UTR, used for fixed cell imaging) and 5′-TCGAGGCGAATAATCTC

CTGACTAATTCAAGAGATTAGTCAGGAGATTATTCGTTTTTTACGCGTA-3′ (Spire1C ORF, used for

live cell imaging). Oligonucleotides for human INF2 siRNA were previously described in Korobova

et al. (2013). Briefly, the sequence used to knockdown INF2 was 5′-ACAAAGAAACTGTGTGTGA-3′,
and as a control, Silencer Negative Control #1 (Ambion) was used.

Amplification of alternate ExonC DNA from mouse tissue panel
Oligos flanking ExonC were designed to amplify the spire1C gene. A mouse tissue cDNA panel

(Clontech, Mountain View, CA) was used as a template for amplification using Primers 7 and 8.
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Amplified DNA containing ExonC was ∼400 bp, while DNA lacking this exon was ∼200 bp. Multiple

oligomer sets were utilized to eliminate non-specific amplification while capturing as many on-target

amplifications as possible. PCR reactions were run on a 2% agaorse gel, and bands of the appropriate

size were excised from the gel and purified using a QIAquick gel extraction kit (Qiagen, Germantown,

MD). Purified DNA was cloned into the pCR II-TOPO vector using the TOPO-TA cloning kit

(Invitrogen). Sequence analysis was used to confirm the sequence of the amplified and inserted DNA.

Plasmids for antibody generation
The Spire1C gene was amplified from mouse cDNA as described above. Vectors used for protein

purification include a modified avidin-6x his-MBP-TEV-3x FLAG-Precision construct under the P1

promoter, as well as a modified pGEX vector for N-terminal GST fusion proteins. All vector backbones

were gifts of Dr. Aaron Straight and are described in Figure 1—figure supplement 2.

Antibody production and affinity purification
ExonC and the C-terminal 50 residues of mouse Spire1 were cloned into the avi-his-MBP-TEV-

3xFLAG-precision vector described above or a modified pGEX vector (for N-terminal GST fusion

proteins) using standard techniques (Figure 1—figure supplement 2). Avi-his-MBP-TEV-3xFLAG-

precision constructs were expressed and purified as described above with the following modifications.

For avi-his-MBP-TEV-3xFLAG-precision constructs, protein was purified over Ni-NTA resin, and the

eluate was further purified on an S-200 gel filtration column, followed by a HiTrap Q column to

remove any contaminating DNA. Protein samples were sent to Cocalico Biologicals and injected into

rabbits to produce antisera.

GST fusion proteins were used for affinity column construction for affinity purification of antibodies.

These proteins were purified by using single colonies of transformed Rosetta (DE3) cells to inoculate 400

ml Terrific Broth (TB; Invitrogen) cultures containing 100 μg/ml carbenicillin, 34 μg/ml chloramphenicol,

which was grown overnight at 37˚C. This culture was diluted into 2 l of fresh TB with antibiotics and

grown to an O.D. of 0.8–0.9, at which time it was moved to 23˚C. After 1 hr at 23˚C, cultures were

induced with 0.5 mM isopropyl β-D-1-thiogalactopyranoside for 3–4 hr and harvested as described for

purification of avi-his-MBP-TEV-3xFLAG-Precision proteins above. Cells were thawed in lysis buffer

(50 mM Tris, 1 M NaCl, 1 mM EDTA, 1 mM DTT, and protease inhibitor cocktail, pH 7.8), sonicated, and

lysates were centrifuged for 30 min at 125,000×g 4˚C. Supernatant was applied to hydrated glutathione

resin (2 ml bed volume per liter culture), protein bound for 1 hr at 4˚C, and resin was washed extensively

with lysis buffer. Protein was eluted with elution buffer (50 mM Tris, 150 mM NaCl, 1 mM EDTA, 20 mM

reduced glutathione, 1 mM DTT, and protease inhibitor cocktail, pH 7.8) and loaded onto a HiTrapQ

anion exchange column. A salt gradient of 150 mM to 1 M was used for protein elution.

Affinity column construction
Spire1 affinity columns were made using GST-fusion proteins following the method of Finan et al.

(2011). Proteins were coupled to Affi-Gel 10 by washing with 5 resin/column vol (CV) of 0.2 M glycine,

pH 2 and quickly equilibrating with PBS. Antisera was filtered through a 0.2 μm filter and flowed over

the column continuously overnight. The column was washed with 50 CV wash buffer (PBS with 500 mM

NaCl and 0.1% Tween 20), followed by 2.5 CV 0.2× PBS. Antibody was eluted with 1 CV 0.2 M glycine,

pH 2 directly into 1 M Tris, pH 8.5 to neutralize the solution. Concentration of elution fractions was

checked on a Nanodrop spectrophotometer using the IgG setting. The column was washed with

20 CV PBS, the antisera was re-filtered, and the purification process was repeated to isolate additional

antibody. Fractions with an O.D. > 0.2 were pooled, dialyzed into PBS containing 50% glycerol, and

stored at −20˚C. Antisera to ExonC yielded no IgG after affinity purification. Instead, whole antisera

were used for subsequent experiments to probe ExonC function and localization.

Antibody characterization
Two rabbit polyclonal antibodies described above and three commercially available antibodies were

used for examining expression patterns of Spire1 protein in various cell types. The antibodies discussed

are: (1) Rabbit polyclonal anti-Spire1 C-term (affinity-purified), (2) Rabbit polyclonal anti-Spire1 ExonC

(whole antisera), (3) Sigma mouse monoclonal anti-Spire1, (4) Abcam (Cambridge, UK) mouse

monoclonal anti Spire1, and (5) Abnova (Taipei, Taiwan) rabbit antisera to Spire1. Notably, all of the
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commercially-available antibodies were targeted to residues 482–584 of the Spire1 isoform lacking

ExonC (NP_064533), and thus could only detect non-ExonC containing isoforms.

Western blots were performed with 5–50 μg cell lysate and antibodies/antisera was tested at

various concentrations, temperatures, and lengths of time for best conditions. Optimized conditions

for all antibodies used in this work are described below. HRP-conjugated goat anti-rabbit secondary

antibody was used at 1:20,000 in all cases.

GST pulldown assay
Spire-KIND (amino acids 1–234) was expressed as a GST fusion protein in bacteria, and purified on

glutathione-sepharose (GE Biosciences, Buckinghamshire, UK) followed by Superdex200 gel filtration

(GE Biosciences) of the glutathione-eluted GST-fusion protein. GST-KIND or GST alone was re-bound to

glutathione-sepharose in binding buffer (50 mM KCl, 1 mM MgCl2, 1 mM EGTA, 10 mM Hepes-HCl pH

7.4, 1 mM DTT, 0.02% thesit (Sigma, St. Louis, MO), 10 μg/ml aprotinin, 2 μg/ml leupeptin, 0.5 mM

benzamidine). INF2-CT (amino acids 469–1249, containing FH1, FH2 and C-terminal regions) and INF2-

NT (amino acids 1–420, containing DID and dimerization region) were purified as described

(Ramabhadran et al., 2012). Proteins were mixed at 20 μM GST protein, 1 μM INF2-CT and 10 μM
INF2-NT in binding buffer and incubated overnight, then quickly washed once in binding buffer.

Proteins in glutathione sepharose-bound pellet were resolved by SDS-PAGE.

Anisotropy binding assay
INF2 C-term (human CAAX variant, amino acids 941–1249) was expressed in bacteria, purified and

labeled on its N-terminal amine with tetramethylrhodamine succinimide as described (Ramabhadran

et al., 2013). Labeled INF2-C-term (20 nM) was mixed with varying concentrations of Spire-KIND or

bovine serum albumin (BSA) in 10 mMHepes pH 7.4, 50 mM KCl, 1 mMMgCl2, 1 mM EGTA, 1 mMDTT,

0.5 mM Thesit detergent (nonaethylene glycol monododecyl ether) at 23˚C for 1 hr before reading

fluorescence anisotropy in an M-1000 fluorescence plate reader (Tecan Inc) at 530 nm excitation and

585 nm emission.

Immunofluorescence
Cells were washed in phosphate buffered saline (PBS; pH 7.4) then fixed with 4% paraformaldehyde

for 30 min. Cells were then permeabilized with 0.1% Triton X-100 for 30 min before being blocked

overnight with 4% BSA at 4˚C. The next day, cells were incubated with primary antibody for 2 hr,

rinsed three times with PBS for 10 min each, then incubated with secondary antibodies (Invitrogen) for

1 hr, rinsed three times with PBS for 10 min each, then counterstained with phalloidin (Invitrogen) for

30 min, then rinsed with PBS three times, then mounted using ProLong Gold antifade reagent.

Confocal imaging
Confocal images were acquired with an Apochromat 63× 1.4 NA objective lens (Carl Zeiss, Jena,

Germany) on a Marinas spinning disk confocal imaging system (Intelligent Imaging Innovations, Denver,

CO) using an EM charge-coupled device camera (Evolve; Photometrics, Tucson, AZ), or a 100× Apo TIRF

1.49 NA objective (Nikon Instruments, Tokyo, Japan) on a Yokogawa CSU-X1 spinning disk system using

an EM charge-coupled device camera (Evolve; Photometrics). Cells were imaged in HEPES-buffered

growth media. Confocal z-stacks were taken using 200 nm steps. Images were deconvoluted using

Slidebook 6. Individual 16-bit tiff image files were exported, then processed using ImageJ.

Source Species Type Target region IB dilution Time Temperature IF dilution

Sigma mouse monoclonal 482–584 of NP_064533; ‘last 100 a.a.’;
flanks (but does not contain) z′

1:2000 1 hr 23˚C n/a

– O/N 4˚C n/a

Abcam mouse monoclonal 1:1000 O/N 4˚C n/a

Abnova rabbit antisera 1:1000 O/N 4˚C n/a

This study rabbit polyclonal, affinity purified last 51 residues 1:2000 O/N 4˚C 1 to 100

1:3000 1 hr 23˚C –

This study rabbit antisera ExonC 1:1000 O/N 4˚C 1 to 500

Manor et al. eLife 2015;4:e08828. DOI: 10.7554/eLife.08828 22 of 27

Research article Cell biology

http://dx.doi.org/10.7554/eLife.08828


Photobleaching of GFP-Spire1C in specific cellular regions
GFP-Spire1C photobleaching experiments presented in Figure 2 and Figure 2—figure supplement 1

were carried out on a Marianas spinning disc confocal microscope equipped with a Mosaic Digital

Illumination System. The laser power entering the Mosaic was 9 mW. Image acquisition and

photobleaching of GFP-Spire1C (including region selection and 405 laser exposure control) were

carried out using Slidebook 6 software.

SIM imaging
SIM imaging of fixed cells was performed using an ELYRA SIM (Carl Zeiss) with an Apochromat 63×
1.4 NA oil objective lens. Five angles of the excitation grid with five phases each were acquired for

each channel and each z-plane, which were spaced at 110 nm each. SIM processing was performed

using the SIM module of the Zeiss Zen software package. 16-bit grayscale tiffs were subsequently

exported to ImageJ for quantification and processing into rendered colored images. Channels in

maximum projection images were aligned in the xy-plane using maximum projection images of

fluorescent beads.

Image processing and analysis
All image analysis and processing was performed using ImageJ. Mitochondria lengths were measured

manually by first setting the scale according to pixel size, drawing a line along the length of the

mitochondria, then using ImageJ’s ‘measure’ function. Colocalization analysis and rendering was

performed using the colocalization plugin included in the MacBiophotonics ImageJ plugin bundle

(http://rsb.info.nih.gov/ij/plugins/mbf/index.html). When calculating Pearson’s values, the mitochondria

channel was used as a mask for colocalization. ER-mitochondria intersection sites were visually identified

as regions where ER tubules could be clearly visualized crossing mitochondria—these regions were

always in the periphery of the cell, significantly restricting the total number of intersections that could be

reliably identified. Mitochondria constriction sites were visually identified as regions defined by relative

narrowing of mitochondria diameter or reduced fluorescence. Magnifications of boxed regions

were generated using ImageJ. Color images of merged 16-bit tiffs exported from the microscope

were generated using the ImageJ ‘merge channels’ function. Statistical analysis was performed using

Excel (Microsoft, Redmond, Washington). p-values were determined using the unpaired Student’s t-test

or ANOVA, as appropriate.

Modeling
The deformed shapes of the membrane tubule representing the constriction site of the mitochondrial

outer membrane were determined by minimizing the energy of the membrane bending upon the

condition of a given pressure P acting on a limited region in the middle of the tube (Figure 8B).

The value of the bending energy, FB, was determined by

FB =  

Z  1

2
  κ   J2   dA; (1)

where κ = 8 × 10−20 Joule is the lipid bilayer bending modulus, J is the local total curvature of the

membrane surface changing along the membrane surface and equal at each point to the sum of the

local principal curvatures (Helfrich, 1973; Spivak, 1979). The integration in Equation 1 is performed

over the whole surface of the deformed tubule.

The boundary conditions for the energy minimization consisted in the requirements that at the

tubule left and right edges (i) the tubule cross-sectional radius, r, remains equal to its initial (preceding

the deformation) value r = R, and (ii) the tubule profile remains parallel to the tubule axis. While the

tubule length L = 680 nm was required to remain constant during the deformation, the tubule surface

area was free to change. This means that the membrane lateral tension was taken to be zero, which

guaranteed that the membrane bending energy was the sole contribution to the membrane elastic

energy.

The energy minimization and the shape determination for each pressure value were performed

using Brakke’s ‘Surface Evolver’ program (Brakke, 1992).
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Loomis PA, Kelly AE, Zheng L, Changyaleket B, Sekerková G, Mugnaini E, Ferreira A, Mullins RD, Bartles JR. 2006.
Targeted wild-type and jerker espins reveal a novel, WH2-domain-dependent way to make actin bundles in cells.
Journal of Cell Science 119:1655–1665. doi: 10.1242/jcs.02869.

Lorenz H, Hailey DW, Lippincott-Schwartz J. 2006. Fluorescence protease protection of GFP chimeras to reveal
protein topology and subcellular localization. Nature Methods 3:205–210. doi: 10.1038/nmeth857.

Mears JA, Lackner LL, Fang S, Ingerman E, Nunnari J, Hinshaw JE. 2011. Conformational changes in Dnm1 support
a contractile mechanism for mitochondrial fission. Nature Structural & Molecular Biology 18:20–26. doi: 10.1038/
nsmb.1949.

Montaville P, Jégou A, Pernier J, Compper C, Guichard B, Mogessie B, Schuh M, Romet-Lemonne G, Carlier MF.
2014. Spire and Formin 2 synergize and antagonize in regulating actin assembly in meiosis by a ping-pong
mechanism. PLOS Biology 12:e1001795. doi: 10.1371/journal.pbio.1001795.
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