8,897 research outputs found
Interface-tuned epoxy/clay nanocomposites
Though interface has been known for a critical role in determining the properties of conventional composites, its role in polymer nanocomposites is still fragmented and in its infancy. This study synthesized a series of epoxy/clay nanocomposites with different interface strength by using three types of modifiers: ethanolamine (denoted ETH), Jeffamine� M2070 (M27) and Jeffamine� XTJ502 (XTJ). XTJ created a strong interface between clay layers and matrix because it bridged the layers with matrix by a chemical reaction as proved by Fourier transform infrared spectroscopy; M27 produced an interme-diate interface strength due to the molecular entanglement between grafted M27 chains and matrix molecules; the interface made by ETH was weak because neither chemical bridging nor molecular entanglement was involved. The studies of mechanical and thermal properties and morphology at a wide range of magnification show that the strong interface promoted the highest level of exfoliation and dispersion of clay layers, and achieved the most increment in Young’s modulus, fracture toughness and glass transition temperature (Tg) of matrix. With w1.3 wt% clay, the critical strain energy release rate G1c of neat epoxy improved from 179.0 to 384.7 J/m, 115% improvement and Tg enhanced from 93.7 to 99.
Kondo effect in crossed Luttinger liquids
We study the Kondo effect in two crossed Luttinger liquids, using Boundary
Conformal Field Theory. We predict two types of critical behaviors: either a
two-channel Kondo fixed point with a nonuniversal Wilson ratio, or a new theory
with an anomalous response identical to that found by Furusaki and Nagaosa (for
the Kondo effect in a single Luttinger liquid). Moreover, we discuss the
relevance of perturbations like channel anisotropy, and we make links with the
Kondo effect in a two-band Hubbard system modeled by a channel-dependent
Luttinger Hamiltonian. The suppression of backscattering off the impurity
produces a model similar to the four-channel Kondo theory.Comment: 7 pages, RevteX, to be published in Physical Review
Optical Nanofibers: a new platform for quantum optics
The development of optical nanofibers (ONF) and the study and control of
their optical properties when coupling atoms to their electromagnetic modes has
opened new possibilities for their use in quantum optics and quantum
information science. These ONFs offer tight optical mode confinement (less than
the wavelength of light) and diffraction-free propagation. The small cross
section of the transverse field allows probing of linear and non-linear
spectroscopic features of atoms with exquisitely low power. The cooperativity
-- the figure of merit in many quantum optics and quantum information systems
-- tends to be large even for a single atom in the mode of an ONF, as it is
proportional to the ratio of the atomic cross section to the electromagnetic
mode cross section. ONFs offer a natural bus for information and for
inter-atomic coupling through the tightly-confined modes, which opens the
possibility of one-dimensional many-body physics and interesting quantum
interconnection applications. The presence of the ONF modifies the vacuum
field, affecting the spontaneous emission rates of atoms in its vicinity. The
high gradients in the radial intensity naturally provide the potential for
trapping atoms around the ONF, allowing the creation of one-dimensional arrays
of atoms. The same radial gradient in the transverse direction of the field is
responsible for the existence of a large longitudinal component that introduces
the possibility of spin-orbit coupling of the light and the atom, enabling the
exploration of chiral quantum optics.Comment: 65 pages, to appear in Advances in Atomic, Molecular and Optical
Physic
A Protein Complex Containing the Conserved Swi2/Snf2-Related ATPase Swr1p Deposits Histone Variant H2A.Z into Euchromatin
The conserved histone variant H2A.Z functions in euchromatin to antagonize the spread of heterochromatin. The mechanism by which histone H2A is replaced by H2A.Z in the nucleosome is unknown. We identified a complex containing 13 different polypeptides associated with a soluble pool of H2A.Z in Saccharomyces cerevisiae. This complex was designated SWR1-Com in reference to the Swr1p subunit, a Swi2/Snf2-paralog. Swr1p and six other subunits were found only in SWR1-Com, whereas six other subunits were also found in the NuA4 histone acetyltransferase and/or the Ino80 chromatin remodeling complex. H2A.Z and SWR1 were essential for viability of cells lacking the EAF1 component of NuA4, pointing to a close functional connection between these two complexes. Strikingly, chromatin immunoprecipitation analysis of cells lacking Swr1p, the presumed ATPase of the complex, revealed a profound defect in the deposition of H2A.Z at euchromatic regions that flank the silent mating type cassette HMR and at 12 other chromosomal sites tested. Consistent with a specialized role for Swr1p in H2A.Z deposition, the majority of the genome-wide transcriptional defects seen in swr1Δ cells were also found in htz1Δ cells. These studies revealed a novel role for a member of the ATP-dependent chromatin remodeling enzyme family in determining the region-specific histone subunit composition of chromatin in vivo and controlling the epigenetic state of chromatin. Metazoan orthologs of Swr1p (Drosophila Domino; human SRCAP and p400) may have analogous functions
Transplantation of canine umbilical cord blood-derived mesenchymal stem cells in experimentally induced spinal cord injured dogs
This study was to determine the effects of allogenic umbilical cord blood (UCB)-derived mesenchymal stem cells (MSCs) and recombinant methionyl human granulocyte colony-stimulating factor (rmhGCSF) on a canine spinal cord injury model after balloon compression at the first lumbar vertebra. Twenty-five adult mongrel dogs were assigned to five groups according to treatment after a spinal cord injury: no treatment (CN); saline treatment (CP); rmhGCSF treatment (G); UCB-MSCs treatment (UCB-MSC); co-treatment (UCBG). The UCB-MSCs isolated from cord blood of canine fetuses were prepared as 106 cells/150 µl saline. The UCB-MSCs were directly injected into the injured site of the spinal cord and rmhGCSF was administered subcutaneously 1 week after the induction of spinal cord injury. The Olby score, magnetic resonance imaging, somatosensory evoked potentials and histopathological examinations were used to evaluate the functional recovery after transplantation. The Olby scores of all groups were zero at the 0-week evaluation. At 2 week after the transplantation, the Olby scores in the groups with the UCB-MSC and UCBG were significantly higher than in the CN and CP groups. However, there were no significant differences between the UCB-MSC and UCBG groups, and between the CN and CP groups. These comparisons remained stable at 4 and 8 week after transplantation. There was significant improvement in the nerve conduction velocity based on the somatosensory evoked potentials. In addition, a distinct structural consistency of the nerve cell bodies was noted in the lesion of the spinal cord of the UCB-MSC and UCBG groups. These results suggest that transplantation of the UCB-MSCs resulted in recovery of nerve function in dogs with a spinal cord injury and may be considered as a therapeutic modality for spinal cord injury
Large-Scale Sidereal Anisotropy of Galactic Cosmic-Ray Intensity Observed by the Tibet Air Shower Array
We present the large-scale sidereal anisotropy ofgalactic cosmic-ray
intensity in the multi-TeV region observed with the Tibet-IIIair shower array
during the period from 1999 through 2003. The sidereal daily variation of
cosmic rays observed in this experiment shows an excess of relative intensity
around hours local sidereal time, as well as a deficit around 12
hours local sidereal time. While the amplitude of the excess is not significant
when averaged over all declinations, the excess in individual declinaton bands
becomes larger and clearer as the viewing direction moves toward the south. The
maximum phase of the excess intensity changes from 7 at the northern
hemisphere to 4 hours at the equatorial region. We also show that both
the amplitude and the phase of the first harmonic vector of the daily variation
are remarkably independent of primary energy in the multi-TeV region. This is
the first result determining the energy and declination dependences of the full
24-hour profiles of the sidereal daily variation in the multi-TeV region with a
single air shower experiment.Comment: 13 pages, 3 figures, 1 table. Accepted for publication in ApJ
Effects of dissipation on quantum phase transitions
We discuss the effect of dissipation on quantum phase transitions. In
particular we concentrate on the Superconductor to Insulator and Quantum-Hall
to Insulator transitions. By invoking a phenomenological parameter to
describe the coupling of the system to a continuum of degrees of freedom
representing the dissipative bath, we obtain new phase diagrams for the quantum
Hall and superconductor-insulator problems. Our main result is that, in
two-dimensions, the metallic phases observed in finite magnetic fields
(possibly also strictly zero field) are adiabatically deformable from one to
the other. This is plausible, as there is no broken symmetry which
differentiates them.Comment: 13 pages, 4 figure
- …