17 research outputs found

    Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome associated with COVID-19: An Emulated Target Trial Analysis.

    Get PDF
    RATIONALE: Whether COVID patients may benefit from extracorporeal membrane oxygenation (ECMO) compared with conventional invasive mechanical ventilation (IMV) remains unknown. OBJECTIVES: To estimate the effect of ECMO on 90-Day mortality vs IMV only Methods: Among 4,244 critically ill adult patients with COVID-19 included in a multicenter cohort study, we emulated a target trial comparing the treatment strategies of initiating ECMO vs. no ECMO within 7 days of IMV in patients with severe acute respiratory distress syndrome (PaO2/FiO2 <80 or PaCO2 ≥60 mmHg). We controlled for confounding using a multivariable Cox model based on predefined variables. MAIN RESULTS: 1,235 patients met the full eligibility criteria for the emulated trial, among whom 164 patients initiated ECMO. The ECMO strategy had a higher survival probability at Day-7 from the onset of eligibility criteria (87% vs 83%, risk difference: 4%, 95% CI 0;9%) which decreased during follow-up (survival at Day-90: 63% vs 65%, risk difference: -2%, 95% CI -10;5%). However, ECMO was associated with higher survival when performed in high-volume ECMO centers or in regions where a specific ECMO network organization was set up to handle high demand, and when initiated within the first 4 days of MV and in profoundly hypoxemic patients. CONCLUSIONS: In an emulated trial based on a nationwide COVID-19 cohort, we found differential survival over time of an ECMO compared with a no-ECMO strategy. However, ECMO was consistently associated with better outcomes when performed in high-volume centers and in regions with ECMO capacities specifically organized to handle high demand. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Bird communities of a temperate forest spatio-temporal partitioning between resident and migratory species

    Get PDF
    International audienceA lot of bird species are declining in number in Europe, and studies of bird community assembly are fundamental to propose efficient conservation actions. Many studies were conducted on the regional variability of the abundance and distribution of bird communities, but few studies considered the local patch variability and intraseason dynamics, which permit one to mechanistically understand the patterns observed across entire seasons. In this study, we considered the intrapatch variability and dynamics of a breeding bird community in the forest patch of CorbiSre (Brittany, France). We tested whether bird community distribution was related to habitat characteristics, whether distribution patterns depended on life history traits of species and how patterns changed during the breeding season. Over 3 years, we used regular sampling and the point count method to sample the whole bird community within the forest patch. Our results show that several biotic and abiotic variables (distance to forest edge, deciduous tree cover, coppice cover, elevation) controlled individual abundances of bird species as well as indicators of the bird community (abundance, diversity, evenness). Moreover, we found that the abundances of resident birds, short-distance migrants and long-distance migrants were differently related to biotic and abiotic variables, and that these relationships varied during the breeding season. We suggest that the space partitioning may be explained by the temporal dynamics of the bird community. Specifically, the early arrival of resident and short-distance migrant species in the forest patch might enable them to preferentially choose high-quality habitats. The long-distance migrants considered in this study arrived later in the breeding season and might not find the same habitat availability, and they might consequently nest only close to the forest edge, in high sites or in sites with a sparse understorey. Our results show that local studies, taking into account migratory status and species dynamics on an intraseason scale, are important keys to understand distribution patterns of bird communities which are observed during entire breeding seasons

    Shared and distinct neural correlates of vowel perception and production

    No full text
    International audienceRecent neurobiological models postulate that sensorimotor interactions play a key role in speech perception and speech motor control, especially under adverse listening conditions or in case of complex articulatory speech sequences. The present fMRI study aimed to investigate whether isolated vowel perception and production might also induce sensorimotor activity, independently of syllable sequencing and coarticulation mechanisms and using a sparse acquisition technique in order to limit influence of scanner noise. To this aim, participants first passively listened to French vowels previously recorded from their own voice. In a subsequent production task, done within the same imaging session and using the same acquisition parameters, participants were asked to overtly produce the same vowels. Our results demonstrate that a left postero-dorsal stream, linking auditory speech percepts with articulatory representations and including the posterior inferior frontal gyrus, the adjacent ventral premotor cortex and the temporoparietal junction, is an influential part of both vowel perception and production. Specific analyses on phonetic features further confirmed the involvement of the left postero-dorsal stream in vowel processing and motor control. Altogether, these results suggest that vowel representations are largely distributed over sensorimotor brain areas and provide further evidence for a functional coupling between speech perception and production systems

    Pretargeting for the implantation of stimulation electrodes into the subthalamic nucleus: a comparative study of magnetic resonance imaging and ventriculography

    No full text
    OBJECTIVE: The optimal imaging modality for preoperative targeting of the subthalamic nucleus (STN) for high-frequency stimulation is controversially discussed. Commonly used methods were stereotactic magnetic resonance imaging (MRI), stereotactic ventriculography, and fusion between MRI and stereotactic computer tomography. All of these techniques not only have their own advantages but also specific limitations and drawbacks. The purpose of this study was to evaluate the accuracy of the preoperative MRI targeting as compared with ventriculography in terms of both the STN target as well as the internal landmarks. METHODS: Thirty patients with Parkinson's disease who underwent bilateral surgery for STN-high-frequency stimulation received both stereotactic ventriculography and stereotactic MRI. The theoretical target was determined by each of these two imaging modalities. The final electrode placement was performed after extensive electrophysiological evaluation using microrecording and microstimulation. The real target was assumed to be given by the electrode contact with the best clinical result assessed by the United Parkinson's Disease Rating Scale in the postoperative follow-up. In addition, the coordinates of the two landmarks, anterior commissure and posterior commissure, were determined using both imaging methods. RESULTS: The mean targeting error was 4.1 +/- 1.7 mm (mean +/- standard deviation) for MRI and 2.4 +/- 1.1 mm for ventriculography (P< 0.0001). The mean target mismatch between the two imaging methods was 2.9 +/- 1.2 mm. The length of the anterior commissure-posterior commissure distance differed significantly (P < 0.0001) between MRI (27.6 +/- 1.6 mm) and ventriculography (25.0 +/- 1.3 mm). The mismatch was mainly induced by an anterior displacement of the anterior commissure by 1.9 +/- 2.2 mm (P < 0.0001) in MRI determination, as compared with ventriculography. CONCLUSION: Our findings show that the indirect targeting of the STN using coordinates based on radiological landmarks is more accurate than the direct targeting using anatomic visualization of the target structure. Regardless of the imaging procedure, electrophysiological mapping is required for optimal electrode placement, although in 20% of cases, the target determined by MRI falls out of the radius explored by electrophysiology

    Pretargeting for the implantation of stimulation electrodes into the subthalamic nucleus: a comparative study of magnetic resonance imaging and ventriculography.

    No full text
    International audienceOBJECTIVE: The optimal imaging modality for preoperative targeting of the subthalamic nucleus (STN) for high-frequency stimulation is controversially discussed. Commonly used methods were stereotactic magnetic resonance imaging (MRI), stereotactic ventriculography, and fusion between MRI and stereotactic computer tomography. All of these techniques not only have their own advantages but also specific limitations and drawbacks. The purpose of this study was to evaluate the accuracy of the preoperative MRI targeting as compared with ventriculography in terms of both the STN target as well as the internal landmarks. METHODS: Thirty patients with Parkinson's disease who underwent bilateral surgery for STN-high-frequency stimulation received both stereotactic ventriculography and stereotactic MRI. The theoretical target was determined by each of these two imaging modalities. The final electrode placement was performed after extensive electrophysiological evaluation using microrecording and microstimulation. The real target was assumed to be given by the electrode contact with the best clinical result assessed by the United Parkinson's Disease Rating Scale in the postoperative follow-up. In addition, the coordinates of the two landmarks, anterior commissure and posterior commissure, were determined using both imaging methods. RESULTS: The mean targeting error was 4.1 +/- 1.7 mm (mean +/- standard deviation) for MRI and 2.4 +/- 1.1 mm for ventriculography (P < 0.0001). The mean target mismatch between the two imaging methods was 2.9 +/- 1.2 mm. The length of the anterior commissure-posterior commissure distance differed significantly (P < 0.0001) between MRI (27.6 +/- 1.6 mm) and ventriculography (25.0 +/- 1.3 mm). The mismatch was mainly induced by an anterior diplacement of the anterior commissure by 1.9 +/- 2.2 mm (P < 0.0001) in MRI determination, as compared with ventriculography. CONCLUSION: Our findings show that the indirect targeting of the STN using coordinates based on radiological landmarks is more accurate than the direct targeting using anatomic visualization of the target structure. Regardless of the imaging procedure, electrophysiological mapping is required for optimal electrode placement, although in 20% of cases, the target determined by MRI falls out of the radius explored by electrophysiology

    Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson's disease

    Get PDF
    Background: Although the short-term benefits of bilateral stimulation of the subthalamic nucleus in patients with advanced Parkinson's disease have been well documented, the long-term outcomes of the procedure are unknown. Methods: We conducted a five-year prospective study of the first 49 consecutive patients whom we treated with bilateral stimulation of the subthalamic nucleus. Patients were assessed at one, three, and five years with levodopa (on medication) and without levodopa (off medication), with use of the Unified Parkinson's Disease Rating Scale. Seven patients did not complete the study: three died, and four were lost to follow-up. Results: As compared with base line, the patients' scores at five years for motor function while off medication improved by 54 percent (P<0.001) and those for activities of daily living improved by 49 percent (P<0.001). Speech was the only motor function for which off-medication scores did not improve. The scores for motor function on medication did not improve one year after surgery, except for the dyskinesia scores. On-medication akinesia, speech, postural stability, and freezing of gait worsened between year 1 and year 5 (P<0.001 for all comparisons). At five years, the dose of dopaminergic treatment and the duration and severity of levodopa-induced dyskinesia were reduced, as compared with base line (P<0.001 for each comparison). The average scores for cognitive performance remained unchanged, but dementia developed in three patients after three years. Mean depression scores remained unchanged. Severe adverse events included a large intracerebral hemorrhage in one patient. One patient committed suicide. Conclusions: Patients with advanced Parkinson's disease who were treated with bilateral stimulation of the subthalamic nucleus had marked improvements over five years in motor function while off medication and in dyskinesia while on medication. There was no control group, but worsening of akinesia, speech, postural stability, freezing of gait, and cognitive function between the first and the fifth year is consistent with the natural history of Parkinson's disease

    The predictive performance of the ANCA renal risk score in patients over 65 years of age with renal ANCA-associated vasculitis

    No full text
    International audienceBackground The anti-neutrophil cytoplasmic antibody (ANCA) renal risk score (ARRS) for predicting renal survival in ANCA-associated vasculitis (AAV) had not previously been validated in adults over 65 years of age and presenting impairments associated with an aging kidney, a high cardiovascular comorbidity burden, and prevalent microscopic polyangiitis. Methods We retrospectively studied a cohort of 192 patients over 65 years of age (median [interquartile range] age: 73 [68; 78]), including 17.2% with renal-limited vasculitis, 49.5% with microscopic polyangiitis and 33.3% with granulomatosis with polyangiitis, at six centres of northern France. The primary study endpoint was the cumulative incidence of end-stage kidney disease (ESKD, maintenance of dialysis for at least 3 months) at 12 months, with death considered as a competing event. Results The median serum creatinine concentration at diagnosis was 300 [202; 502] µmol/L, and 48 (25.0%) patients required dialysis at presentation. The ARRS was high in 43 (22.4%) patients, medium in 106 (55.2%), and low in 43 (22.4%). The cumulative incidence of ESKD at 12 months was 0% in the low-risk group, 13.0% [7.6–20.0] in the medium-risk group, and 44.0% [29.0–58.0] in the high-risk group (p &lt; 0.001). In the subgroup of 149 patients presenting a medium or high score, the ARRS had a C-index of 0.66 [0.58–0.74] for the prediction of ESKD at 12 months; this rose to 0.86 [0.80–0.90] when dialysis status at diagnosis was included. Conclusion The ARRS was a poor predictor of kidney survival at 12 months among patients over 65 years of age with renal AAV involvement—especially in the high ARRS group. The addition of dialysis status at diagnosis as an additional clinical parameter might improve the ARRS's predictive performance

    Model physics and chemistry causing intermodel disagreement within the VolMIP-Tambora Interactive Stratospheric Aerosol ensemble

    No full text
    As part of the Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP), several climate modeling centers performed a coordinated prestudy experiment with interactive stratospheric aerosol models simulating the volcanic aerosol cloud from an eruption resembling the 1815 Mt. Tambora eruption (VolMIP-Tambora ISA ensemble). The pre-study provided the ancillary ability to assess intermodel diversity in the radiative forcing for a large stratospheric-injecting equatorial eruption when the volcanic aerosol cloud is simulated interactively. An initial analysis of the VolMIP-Tambora ISA ensemble showed large disparities between models in the stratospheric global mean aerosol optical depth (AOD). In this study, we now show that stratospheric global mean AOD differences among the participating models are primarily due to differences in aerosol size, which we track here by effective radius. We identify specific physical and chemical processes that are missing in some models and/or parameterized differently between models, which are together causing the differences in effective radius. In particular, our analysis indicates that interactively tracking hydroxyl radical (OH) chemistry following a large volcanic injection of sulfur dioxide (SO2) is an important fac tor in allowing for the timescale for sulfate formation to be properly simulated. In addition, depending on the timescale of sulfate formation, there can be a large difference in effective radius and subsequently AOD that results from whether the SO2 is injected in a single model grid cell near the location of the volcanic eruption, or whether it is injected as a longitudinally averaged band around the Earth. Atmospheric Remote Sensin

    Model physics and chemistry causing intermodel disagreement within the VolMIP-Tambora Interactive Stratospheric Aerosol ensemble

    Get PDF
    International audienceAs part of the Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP), several climate 30 modeling centers performed a coordinated pre-study experiment with interactive stratospheric aerosol models simulating the volcanic aerosol cloud from an eruption resembling the 1815 Mt Tambora eruption (VolMIP-Tambora ISA ensemble). The pre-study provided the ancillary ability to assess intermodel diversity in the radiative forcing for a large stratospheric-injecting equatorial eruption when the volcanic aerosol cloud is simulated interactively. An initial analysis of the VolMIP-Tambora ISA ensemble showed large disparities between models in the stratospheric global mean aerosol optical depth (AOD). In this study, we 35 now show that stratospheric global mean AOD differences among the participating models are primarily due to differences in aerosol size, which we track here by effective radius. We identify specific physical and chemical processes that are missing in some models and/or parameterized differently between models, which are together causing the differences in effective radius. In particular, our analysis indicates that interactively tracking hydroxyl radical (OH) chemistry following a large volcanic injection of sulfur dioxide (SO2) is an important factor in allowing for the timescale for sulfate formation to be properly simulated. In 40 addition, depending on the timescale of sulfate formation, there can be a large difference in effective radius and subsequently AOD that results from whether the SO2 is injected in a single model gridcell near the location of the volcanic eruption, or whether it is injected as a longitudinally averaged band around the Earth
    corecore