156 research outputs found
Association between the squat lobster Gastroptychus formosus and cold-water corals in the North Atlantic
Although there are no previous descriptions of the habits of chirostylids in the North Atlantic, it is likely that species in the genera Uroptychus, Eumunida and Gastroptychus have close ecological ties with deep-sea corals since they have all been recorded in trawl samples containing corals from ∼200m depth. We analysed in situ distribution of Gastroptychus formosus and potential hosts using a ROV at a range of north-eastern Atlantic sites and found that this species forms a close association with deep-sea corals that resembles the chirostylid-anthozoan associations reported in shallow Indo-Pacific waters. We update the known distribution for G. formosus, confirming that it is an amphiatlantic species that occurs along the Mid-Atlantic Ridge at least as far south as the Azores and along continental margins from the Canary Islands to Scotland at depths of 600-1700m. The adults have very specific habitat preferences, being only found on gorgonian and antipatharian corals with a strong preference for Leiopathes sp. as a host. This highly restricted habitat preference is likely to render chirostylids vulnerable to the impacts of demersal fishing both directly, as by-catch, and indirectly through habitat loss. © 2010 Marine Biological Association of the United Kingdom
Deep-water oyster cliffs at La Chapelle Bank (Celtic Margin)
The maiden voyage of Ghent University’s ROV GENESIS on-board R/V Belgica (13-20 June 2006) has succeeded in contributing to several objectives of the EU-projects HERMES and EURODOM, as well as of the ESF Euromargins project MoundForce. After several trials in the Bay of Douarnenez, GENESIS made its first deep-water survey dives off the Banc de la Chapelle, on the Celtic margin, down to 700 m. The French canyon system near the Banc de la Chapelle offered a perfect location for rigorous trials of GENESIS: reported cold-water coral finds, rugged topography and hydrodynamics in a setting linking the shelf seas to the deep marine realm. The area was first surveyed using R/V Belgica’s multibeam echosounder, imaging deep canyons and thalweg channels between prominent spurs where corals had been reported. High resolution seismic sparker lines provided a geological context and linked in to the existing seismostratigraphy.Two successful dives revealed a sandy-muddy seabed with curious bedforms and erosion exposing consolidated sedimentary sequences, often cut by vertical cliffs up to 10m high. At the base of the cliffs, fallen blocks provided settlement sites for sessile organisms whilst the cliffs and protruding banks revealed dense communities of unidentified giant ostreidae (probably Neopycnodonte sp) forming 3D assemblage with occasional cold-water coral colonies (Lophelia pertusa). Though deep-water ‘oyster banks’ of Neopyncodonte cochlear had already been reported in the Bay of Biscay by ..Le Danois (1948) based on dredges, these dramatic seascapes had remained largely hidden to the human eye up to now
Online Monitoring of the Osiris Reactor with the Nucifer Neutrino Detector
Originally designed as a new nuclear reactor monitoring device, the Nucifer
detector has successfully detected its first neutrinos. We provide the second
shortest baseline measurement of the reactor neutrino flux. The detection of
electron antineutrinos emitted in the decay chains of the fission products,
combined with reactor core simulations, provides an new tool to assess both the
thermal power and the fissile content of the whole nuclear core and could be
used by the Inter- national Agency for Atomic Energy (IAEA) to enhance the
Safeguards of civil nuclear reactors. Deployed at only 7.2m away from the
compact Osiris research reactor core (70MW) operating at the Saclay research
centre of the French Alternative Energies and Atomic Energy Commission (CEA),
the experiment also exhibits a well-suited configuration to search for a new
short baseline oscillation. We report the first results of the Nucifer
experiment, describing the performances of the 0.85m3 detector remotely
operating at a shallow depth equivalent to 12m of water and under intense
background radiation conditions. Based on 145 (106) days of data with reactor
ON (OFF), leading to the detection of an estimated 40760 electron
antineutrinos, the mean number of detected antineutrinos is 281 +- 7(stat) +-
18(syst) electron antineutrinos/day, in agreement with the prediction 277(23)
electron antineutrinos/day. Due the the large background no conclusive results
on the existence of light sterile neutrinos could be derived, however. As a
first societal application we quantify how antineutrinos could be used for the
Plutonium Management and Disposition Agreement.Comment: 22 pages, 16 figures - Version
Unraveling the Developmental and Genetic Mechanisms Underpinning Floral Architecture in Proteaceae
Proteaceae are a basal eudicot family with a highly conserved floral groundplan but which displays considerable variation in other aspects of floral and inflorescence morphology. Their morphological diversity and phylogenetic position make them good candidates for understanding the evolution of floral architecture, in particular the question of the homology of the undifferentiated perianth with the differentiated perianth of core eudicots, and the mechanisms underlying the repeated evolution of zygomorphy. In this paper, we combine a morphological approach to explore floral ontogenesis and a transcriptomic approach to access the genes involved in floral organ identity and development, focusing on Grevillea juniperina, a species from subfamily Grevilleoideae. We present developmental data for Grevillea juniperina and three additional species that differ in their floral symmetry using stereomicroscopy, SEM and High Resolution X-Ray Computed Tomography. We find that the adnation of stamens to tepals takes place at early developmental stages, and that the establishment of bilateral symmetry coincides with the asymmetrical growth of the single carpel. To set a framework for understanding the genetic basis of floral development in Proteaceae, we generated and annotated de novo a reference leaf/flower transcriptome from Grevillea juniperina. We found Grevillea homologs of all lineages of MADS-box genes involved in floral organ identity. Using Arabidopsis thaliana gene expression data as a reference, we found homologs of other genes involved in floral development in the transcriptome of G. juniperina. We also found at least 21 class I and class II TCP genes, a gene family involved in the regulation of growth processes, including floral symmetry. The expression patterns of a set of floral genes obtained from the transcriptome were characterized during floral development to assess their organ specificity and asymmetry of expression
To hit or not to hit, that is the question -genome-wide structure-based druggability predictions for <i>pseudomonas aeruginosa </i>proteins
Pseudomonas aeruginosa is a Gram-negative bacterium known to cause opportunistic infections in immune-compromised or immunosuppressed individuals that often prove fatal. New drugs to combat this organism are therefore sought after. To this end, we subjected the gene products of predicted perturbative genes to structure-based druggability predictions using DrugPred. Making this approach suitable for large-scale predictions required the introduction of new methods for calculation of descriptors, development of a workflow to identify suitable pockets in homologous proteins and establishment of criteria to obtain valid druggability predictions based on homologs. We were able to identify 29 perturbative proteins of P. aeruginosa that may contain druggable pockets, including some of them with no or no drug-like inhibitors deposited in ChEMBL. These proteins form promising novel targets for drug discovery against P. aeruginosa
Unveiling a novel transient druggable pocket in BACE-1 through molecular simulations: conformational analysis and binding mode of multisite inhibitors
The critical role of BACE-1 in the formation of neurotoxic ß-amyloid peptides in the brain makes it an attractive target for an efficacious treatment of Alzheimer’s disease. However, the development of clinically useful BACE-1 inhibitors has proven to be extremely challeng- ing. In this study we examine the binding mode of a novel potent inhibitor (compound 1, with IC50 80 nM) designed by synergistic combination of two fragments—huprine and rhein— that individually are endowed with very low activity against BACE-1. Examination of crystal structures reveals no appropriate binding site large enough to accommodate 1. Therefore we have examined the conformational flexibility of BACE-1 through extended molecular dynamics simulations, paying attention to the highly flexible region shaped by loops 8–14, 154–169 and 307–318. The analysis of the protein dynamics, together with studies of pocket druggability, has allowed us to detect the transient formation of a secondary binding site, which contains Arg307 as a key residue for the interaction with small molecules, at the edge of the catalytic cleft. The formation of this druggable “floppy” pocket would enable the bind- ing of multisite inhibitors targeting both catalytic and secondary sites. Molecular dynamics simulations of BACE-1 bound to huprine-rhein hybrid compounds support the feasibility of this hypothesis. The results provide a basis to explain the high inhibitory potency of the two enantiomeric forms of 1, together with the large dependence on the length of the oligo- methylenic linker. Furthermore, the multisite hypothesis has allowed us to rationalize the inhibitory potency of a series of tacrine-chromene hybrid compounds, specifically regarding the apparent lack of sensitivity of the inhibition constant to the chemical modifications intro- duced in the chromene unit. Overall, these findings pave the way for the exploration of novel functionalities in the design of optimized BACE-1 multisite inhibitors
Expansion cone for the 3-inch PMTs of the KM3NeT optical modules
[EN] Detection of high-energy neutrinos from distant astrophysical sources will open a new window on the Universe. The detection principle exploits the measurement of Cherenkov light emitted by charged particles resulting from neutrino interactions in the matter containing the telescope. A novel multi-PMT digital optical module (DOM) was developed to contain 31 3-inch photomultiplier tubes (PMTs). In order to maximize the detector sensitivity, each PMT will be surrounded by an expansion cone which collects photons that would otherwise miss the photocathode. Results for various angles of incidence with respect to the PMT surface indicate an increase in collection efficiency by 30% on average for angles up to 45 degrees with respect to the perpendicular. Ray-tracing calculations could reproduce the measurements, allowing to estimate an increase in the overall photocathode sensitivity, integrated over all angles of incidence, by 27% (for a single PMT). Prototype DOMs, being built by the KM3NeT consortium, will be equipped with these expansion cones.This work is supported through the EU, FP6 Contract no. 011937, FP7 grant agreement no. 212252, and the Dutch Ministry of Education, Culture and Science.Adrián Martínez, S.; Ageron, M.; Aguilar, JA.; Aharonian, F.; Aiello, S.; Albert, A.; Alexandri, M.... (2013). Expansion cone for the 3-inch PMTs of the KM3NeT optical modules. Journal of Instrumentation. 8(3):1-19. https://doi.org/10.1088/1748-0221/8/03/T03006S1198
Detection potential of the KM3NeT detector for high-energy neutrinos from the Fermi bubbles
A recent analysis of the Fermi Large Area Telescope data provided evidence for a high-intensity emission of high-energy gamma rays with a E 2 spectrum from two large areas, spanning 50 above and below the
Galactic centre (the ‘‘Fermi bubbles’’). A hadronic mechanism was proposed for this gamma-ray emission making the Fermi bubbles promising source candidates of high-energy neutrino emission. In this work Monte Carlo simulations regarding the detectability of high-energy neutrinos from the Fermi bubbles
with the future multi-km3 neutrino telescope KM3NeT in the Mediterranean Sea are presented. Under the hypothesis that the gamma-ray emission is completely due to hadronic processes, the results indicate
that neutrinos from the bubbles could be discovered in about one year of operation, for a neutrino spectrum with a cutoff at 100 TeV and a detector with about 6 km3 of instrumented volume. The effect of a
possible lower cutoff is also considered.Published7–141.8. Osservazioni di geofisica ambientaleJCR Journalrestricte
- …