171 research outputs found

    Regulation of downstream neuronal genes by proneural transcription factors during initial neurogenesis in the vertebrate brain

    Get PDF
    International audienceBACKGROUND: Neurons arise in very specific regions of the neural tube, controlled by components of the Notch signalling pathway, proneural genes, and other bHLH transcription factors. How these specific neuronal areas in the brain are generated during development is just beginning to be elucidated. Notably, the critical role of proneural genes during differentiation of the neuronal populations that give rise to the early axon scaffold in the developing brain is not understood. The regulation of their downstream effectors remains poorly defined. RESULTS: This study provides the first overview of the spatiotemporal expression of proneural genes in the neuronal populations of the early axon scaffold in both chick and mouse. Overexpression studies and mutant mice have identified a number of specific neuronal genes that are targets of proneural transcription factors in these neuronal populations. CONCLUSION: Together, these results improve our understanding of the molecular mechanisms involved in differentiation of the first neuronal populations in the brain

    Complement Regulates Nutrient Influx and Metabolic Reprogramming during Th1 Cell Responses.

    Get PDF
    Expansion and acquisition of Th1 cell effector function requires metabolic reprogramming; however, the signals instructing these adaptations remain poorly defined. Here we found that in activated human T cells, autocrine stimulation of the complement receptor CD46, and specifically its intracellular domain CYT-1, was required for induction of the amino acid (AA) transporter LAT1 and enhanced expression of the glucose transporter GLUT1. Furthermore, CD46 activation simultaneously drove expression of LAMTOR5, which mediated assembly of the AA-sensing Ragulator-Rag-mTORC1 complex and increased glycolysis and oxidative phosphorylation (OXPHOS), required for cytokine production. T cells from CD46-deficient patients, characterized by defective Th1 cell induction, failed to upregulate the molecular components of this metabolic program as well as glycolysis and OXPHOS, but IFN-γ production could be reinstated by retrovirus-mediated CD46-CYT-1 expression. These data establish a critical link between the complement system and immunometabolic adaptations driving human CD4(+) T cell effector function

    Long-Term Intranasal Nerve Growth Factor Treatment Favors Neuron Formation in de novo Brain Tissue

    Get PDF
    ObjectiveTo date, no safe and effective pharmacological treatment has been clinically validated for improving post-stroke neurogenesis. Growth factors are good candidates but low safety has limited their application in the clinic. An additional restraint is the delivery route. Intranasal delivery presents many advantages.Materials and MethodsA brain lesion was induced in twenty-four rats. Nerve growth factor (NGF) 5 μg/kg/day or vehicle was given intranasally from day 10 post-lesion for two periods of five weeks, separated by a two-week wash out period with no treatment. Lesion volume and atrophy were identified by magnetic resonance imaging (MRI). Anxiety and sensorimotor recovery were measured by behavior tests. Neurogenesis, angiogenesis and inflammation were evaluated by histology at 12 weeks.ResultsRemarkable neurogenesis occurred and was visible at the second and third months after the insult. Tissue reconstruction was clearly detected by T2 weighted MRI at 8 and 12 weeks post-lesion and confirmed by histology. In the new tissue (8.1% of the lesion in the NGF group vs. 2.4%, in the control group at 12 weeks), NGF significantly increased the percentage of mature neurons (19% vs. 7%). Angiogenesis and inflammation were not different in the two groups. Sensorimotor recovery was neither improved nor hampered by NGF during the first period of treatment, but NGF treatment limited motor recovery in the second period.InterpretationThe first five-week period of treatment was very well tolerated. This study is the first presenting the effects of a long treatment with NGF and has shown an important tissue regeneration rate at 8 and 12 weeks post-injury. NGF may have increased neuronal differentiation and survival and favored neurogenesis and neuron survival through subventricular zone (SVZ) neurogenesis or reprogramming of reactive astrocytes. For the first time, we evidenced a MRI biomarker of neurogenesis and tissue reconstruction with T2 and diffusion weighted imaging

    Intrinsic NLRP3 inflammasome activity is critical for normal adaptive immunity via regulation of IFN-γ in CD4+ T cells

    Get PDF
    The NLRP3 inflammasome controls interleukin-1b maturation in antigen-presenting cells, but a direct role for NLRP3 in human adaptive immune cells has not been described.We found that the NLRP3 inflammasome assembles in human CD4+ Tcells and initiates caspase-1–dependent interleukin-1b secretion, thereby promoting interferon-g production and T helper 1 (TH1) differentiation in an autocrine fashion. NLRP3 assembly requires intracellular C5 activation and stimulation of C5a receptor 1 (C5aR1), which is negatively regulated by surface-expressed C5aR2. Aberrant NLRP3 activity in Tcells affects inflammatory responses in human autoinflammatory disease and in mouse models of inflammation and infection. Our results demonstrate that NLRP3 inflammasome activity is not confined to “innate immune cells” but is an integral component of normal adaptive TH1 responses

    The role of HLA-G in human pregnancy

    Get PDF
    Pregnancy in mammals featuring hemochorial placentation introduces a major conflict with the mother's immune system, which is dedicated to repelling invaders bearing foreign DNA and RNA. Numerous and highly sophisticated strategies for preventing mothers from rejecting their genetically different fetus(es) have now been identified. These involve production of novel soluble and membrane-bound molecules by uterine and placental cells. In humans, the placenta-derived molecules include glycoproteins derived from the HLA class Ib gene, HLA-G. Isoforms of HLA-G saturate the maternal-fetal interface and circulate in mothers throughout pregnancy. Uteroplacental immune privilege for the fetus and its associated tissues is believed to result when immune cells encounter HLA-G. Unequivocally demonstration of this concept requires experiments in animal models. Both the monkey and the baboon express molecules that are similar but not identical to HLA-G, and may comprise suitable animal models for establishing a central role for these proteins in pregnancy

    Chromatin Remodeling Protein SMAR1 Is a Critical Regulator of T Helper Cell Differentiation and Inflammatory Diseases

    Get PDF
    T cell differentiation from naïve T cells to specialized effector subsets of mature cells is determined by the iterative action of transcription factors. At each stage of specificT cell lineage differentiation, transcription factor interacts not only with nuclear proteins such as histone and histone modifiers but also with other factors that are bound to the chromatin and play a critical role in gene expression. In this review, we focus on one of such nuclear protein known as tumor suppressor and scaffold matrix attachment region-binding protein 1 (SMAR1) in CD4+ T cell differentiation. SMAR1 facilitates Th1 differentiation by negatively regulating T-bet expression via recruiting HDAC1–SMRT complex to its gene promoter. In contrast, regulatory T (Treg) cell functions are dependent on inhibition of Th17-specific genes mainly IL-17 and STAT3 by SMAR1. Here, we discussed a critical role of chromatin remodeling protein SMAR1 in maintaining a fine-tuned balance between effector CD4+ T cells and Treg cells by influencing the transcription factors during allergic and autoimmune inflammatory diseases

    A homodimeric complex of HLA-G on normal trophoblast cells modulates antigen-presenting cells via LILRB1

    Get PDF
    In healthy individuals, the non-classical MHC molecule HLA-G is only expressed on fetal trophoblast cells that invade the decidua during placentation. We show that a significant proportion of HLA-G at the surface of normal human trophoblast cells is present as a disulphide-linked homodimer of the conventional β2m-associated HLA-I complex. HLA-G is a ligand for leukocyte immunoglobulin-like receptors (LILR), which bind much more efficiently to dimeric HLA-G than to conventional HLA-I molecules. We find that a LILRB1-Fc fusion protein preferentially binds the dimeric form of HLA-G on trophoblast cells. We detect LILRB1 expression on decidual myelomonocytic cells; therefore, trophoblast HLA-G may modulate the function of these cells. Co-culture with HLA-G+ cells does not inhibit monocyte-derived dendritic cell up-regulation of HLA-DR and costimulatory molecules on maturation, but did increase production of IL-6 and IL-10. Furthermore, proliferation of allogeneic lymphocytes was inhibited by HLA-G binding to LILRB1/2 on responding antigen-presenting cells (APC). As HLA-G is the only HLA-I molecule that forms β2m-associated dimers with increased avidity for LILRB1, this interaction could represent a placental-specific signal to decidual APC. We suggest that the placenta is modulating maternal immune responses locally in the uterus through HLA-G, a trophoblast-specific, monomorphic signal present in almost every pregnancy

    Notch signaling in T helper cell subsets: Instructor or unbiased amplifier?

    Get PDF
    For protection against pathogens, it is essential that naïve CD4+ T cells differentiate into specific effector T helper (Th) cell subsets following activation by antigen presented by dendritic cells (DCs). Next to T cell receptor and cytokine signals, membrane-bound Notch ligands have an important role in orchestrating Th cell differentiation. Several studies provided evidence that DC activation is accompanied by surface expression of Notch ligands. Intriguingly, DCs that express the delta-like or Jagged Notch ligands gain the capacity to instruct Th1 or Th2 cell polarization, respectively. However, in contrast to this model it has also been hypothesized that Notch signaling acts as a general amplifier of Th cell responses rather than an instructive director of specific T cell fates. In this alternative model, Notch enhances proliferation, cytokine production, and anti-apoptotic signals or promotes co-stimulatory signals in T cells. An instructive role for Notch ligand expressing DCs in the induction of Th cell differentiation is further challenged by evidence for the involvement of Notch signaling in differentiation of Th9, Th17, regulatory T cells, and follicular Th cells. In this review, we will discuss the two opposing models, referred to as the "instructive" and the "unbiased amplifier" model. We highlight both the function of different Notch receptors on CD4+ T cells and the impact of Notch ligands on antigen-presenting cells

    The regulation of IL-10 expression

    Get PDF
    Interleukin (IL)-10 is an important immunoregulatory cytokine and an understanding of how IL-10 expression is controlled is critical in the design of immune intervention strategies. IL-10 is produced by almost all cell types within the innate (including macrophages, monocytes, dendritic cells (DCs), mast cells, neutrophils, eosinophils and natural killer cells) and adaptive (including CD4(+) T cells, CD8(+) T cells and B cells) immune systems. The mechanisms of IL-10 regulation operate at several stages including chromatin remodelling at the Il10 locus, transcriptional regulation of Il10 expression and post-transcriptional regulation of Il10 mRNA. In addition, whereas some aspects of Il10 gene regulation are conserved between different immune cell types, several are cell type- or stimulus-specific. Here, we outline the complexity of IL-10 production by discussing what is known about its regulation in macrophages, monocytes, DCs and CD4(+) T helper cells
    corecore