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SUMMARY

Expansion and acquisition of Th1 cell effector func-
tion requires metabolic reprogramming; however,
the signals instructing these adaptations remain
poorly defined. Here we found that in activated
human T cells, autocrine stimulation of the comple-
ment receptor CD46, and specifically its intracellular
domain CYT-1, was required for induction of the
amino acid (AA) transporter LAT1 and enhanced
expression of the glucose transporter GLUT1.
Furthermore, CD46 activation simultaneously drove
expression of LAMTOR5, which mediated assembly
of the AA-sensing Ragulator-Rag-mTORC1 complex
and increased glycolysis and oxidative phosphoryla-
tion (OXPHOS), required for cytokine production.
T cells from CD46-deficient patients, characterized
by defective Th1 cell induction, failed to upregulate
themolecular components of thismetabolic program
as well as glycolysis and OXPHOS, but IFN-g pro-
duction could be reinstated by retrovirus-mediated
CD46-CYT-1 expression. These data establish a crit-
ical link between the complement system and immu-
nometabolic adaptations driving human CD4+ T cell
effector function.

INTRODUCTION

Naive T cells aremetabolically quiescent, primarily depending on

oxidative phosphorylation (OXPHOS) for homeostatic adenosine

triphosphate (ATP) generation (Gubser et al., 2013; Pearce et al.,

2013; Rathmell, 2012; van der Windt et al., 2012, 2013). Ligation

of the T cell receptor (TCR) and costimulatory molecules initiates

significant changes in nutrient uptake and usage of metabolic

pathways, jointly supporting bioenergetic and non-bioenergetic

requirements of activated T cells (Gerriets and Rathmell, 2012;

Jacobs et al., 2008; Pearce et al., 2013; Wang et al., 2011).

Enhanced cellular uptake of amino acids (AA) is mediated by

increased expression of several system L amino-acid trans-

porters—particularly SLC7A5 (which together with SLC3A2

forms the neutral AA transporter LAT1). SLC7A5-deficient

T cells, or T cellswith compromisedSLC3A2 expression, demon-

strate broad metabolic defects and fail to proliferate and acquire

effector functions (Sinclair et al., 2013; Wang et al., 2011). Like-

wise, upregulation of the glucose transporter GLUT1 (SLC2A1)

and increased glycolytic flux (aerobic glycolysis) are needed for

growth, expansion, and effector functionality (Macintyre et al.,

2014) as is upregulation of OXPHOS, which supports T cell prolif-

eration, interleukin (IL)-2 production, and enhanced glycolysis

(Sena et al., 2013). Thus, activation of T cells is highly dependent

on increasing AA-uptake, glycolytic flux, and OXPHOS.

The metabolic-checkpoint kinase mechanistic target of rapa-

mycin (mTOR) senses and integrates environmental signals to

regulate metabolic activity in cells. Activation of mTOR triggers

glycolysis, OXPHOS, and lipid synthesis (Cunningham et al.,

2007; Düvel et al., 2010; Shi et al., 2011) and mTOR-deficient

CD4+ T cells are unable to adjust metabolically and differentiate

into effector cells (Delgoffe et al., 2009; Zheng et al., 2007).

mTOR signals via two distinct complexes, mTOR complex 1

(mTORC1) and mTOR complex 2 (mTORC2), with mTORC1 ac-

tivity inducing the enzymes needed for glycolysis and being spe-

cifically required for normal Th1 and Th17 cell induction (Pollizzi

and Powell, 2014). Cytokines, availability of oxygen, and cellular

energy levels all impact mTORC1 activity via the tuberous scle-

rosis 1 (TSC1)-TSC2 axis (Bar-Peled and Sabatini, 2014). By

contrast, sensing sufficiency of AA by mTORC1 occurs via the

RAS-related GTP-binding protein (Rag) family of small GTPases
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(Bar-Peled et al., 2012; Groenewoud and Zwartkruis, 2013; Long

et al., 2005; Sancak et al., 2010). Specifically, in the presence

of AA within the lysosomal lumen, the Rag A-B heterodimer

becomes GTP-loaded and induces mTORC1 translocation to ly-

sosomes, bringing it into close proximity of its activator Rheb

(Groenewoud and Zwartkruis, 2013; Long et al., 2005; Sancak

et al., 2010). The Rags are bound to lysosomes via the pentame-

ric Ragulator complex, which consists of the ‘‘late endosomal or

lysosomal adaptor and MAPK and mTOR activator’’ (LAMTOR

1–5) proteins (Sancak et al., 2010), and this LAMTOR-Rag-

Rheb-mTORC1 complex then permits metabolic activation.

While the importance of metabolism in enabling T cell activa-

tion and differentiation is established, the in vivo pathways di-

recting those events remain poorly defined. This is particularly

true with regard to our understanding of metabolic reprogram-

ming in human T cells. CD46, initially discovered as a comple-

ment regulator that binds and inactivates C3b and C4b (Liszew-

ski et al., 1991), is also a key costimulatory molecule on human

CD4+ T cells (Astier et al., 2000; Cardone et al., 2010; Kemper

et al., 2003; Le Friec et al., 2012). Importantly, CD46 is not ex-

pressed on hematopoietic cells in rodents and has no known

functional homolog (Cope et al., 2011). In humans, CD46 is

ubiquitously expressed in four distinct isoforms, with one of

two alternatively spliced cytoplasmic tails, termed CYT-1 and

CYT-2 (Liszewski and Atkinson, 1996), each mediating distinct

signaling events (Cope et al., 2011). CD46-transduced signals

are critically required for the induction of IFN-g in human CD4+

T cells, with indications that CYT-1 is driving Th1 cell polarization

(Le Friec et al., 2012; Ni Choileain et al., 2011). Together with

IL-2, CD46 also mediates IL-10 coexpression in expanded Th1

cells, and via this the switch toward a (self)regulatory contraction

phase (Cardone et al., 2010). Unexpectedly, CD46-mediated

activation of T cells is independent of systemic C3, but driven

in an autocrine manner by the C3 activation fragment C3b gener-

ated by the T cell itself upon TCR activation (Cardone et al., 2010;

Liszewski et al., 2013). Thus, lack of autocrine CD46 activation,

such as in CD46- and C3-deficient patients, results in subnormal

Th1 cell responses (Le Friec et al., 2012), whereas uncontrolled

autocrine C3 activation and dysregulated CD46 engagement

contribute to hyperactive Th1 cell responses in autoimmune pa-

thologies (Astier et al., 2006; Cardone et al., 2010; Liszewski

et al., 2013).

In this report we postulate a link between complement and key

metabolic events regulating the human Th1 cell response. We

characterize the dominant role of CD46 over CD28 in regulating

GLUT1, LAT1, and nutrient uptake, define LAMTOR5 as part of

the AA sensing machinery in human CD4+ T cells, and develop

a model interlinking metabolic reprogramming with CD46-medi-

ated Th1 cell activation and contraction.

RESULTS

Autocrine CD46 Activation Is Required for Normal
Glycolysis and OXPHOS
Autocrine CD46 activation by TCR-driven generation of C3b is

an integral and non-redundant part of human Th1 cell induction

and contraction (Liszewski et al., 2013). Activation of T cells

with increasing amounts of monoclonal anti-CD3 and/or anti-

CD28 mAbs was associated with larger surface deposition of

C3b (Figure 1A), as well as IFN-g production and IL-10 switch-

ing (Figure S1A). This suggested that modulation of Th1 cell

cytokine production by varying TCR and costimulatory signal

strength (Viola and Lanzavecchia, 1996) is impacted by

CD46-mediated signaling. IFN-g production by murine CD4+

T cells is accompanied by specific metabolic changes (Chang

et al., 2013), which led us to interrogate whether CD46 regu-

lates human Th1 cell responses via modulation of key meta-

bolic pathways. We used T cells from three patients with absent

or severely reduced CD46 expression (CD46-1, CD46-2, and

CD46-3 [Couzi et al., 2008; Fremeaux-Bacchi et al., 2006;

and Figure S1B, legend]), T cells from healthy donors (HDs) in

which CD46 protein expression was reduced by siRNA tech-

nique, and Jurkat T cell lines overexpressing specific CD46 iso-

forms. Whole-exome sequencing of DNA samples from patients

CD46-2 (sibling of CD46-1) and CD46-3 confirmed the ex-

pected mutations in CD46 but did not identify additional muta-

tions in candidate genes mediating T cell function or genes

known to cause monogenic immune defects (Table S1 and

S2). While expression of CD3 and CD28 on T cells from all three

patients was within normal range (Figure S1B), their CD4+

T cells demonstrated impaired acquisition of Th1 cell effector

function in response to TCR ligation and costimulation via either

CD46 or CD28 (Cardone et al., 2010; Le Friec et al., 2012) (Fig-

ure 1Bi). The phenotype of T cells from HDs treated with CD46-

specific siRNA (Figure S1Ci) was comparable, with a specific

reduction in IFN-g and IL-10, but normal IL-5 production (Fig-

ure 1Bii), and reduced upregulation of CD25 (Ni Choileain

et al., 2011), but unaltered expression of CD69 (Figure S1Cii)

(Le Friec et al., 2012). Only T cells from patient CD46-3, which

lacked CD46 expression entirely (Figure S1B, legend), were un-

able to produce IL-17.

As upregulation of mitochondrial respiration (OXPHOS) and

aerobic glycolysis is central to T cell effector function, we as-

sessed the metabolic profile (mitochondrial respiration (oxygen

Figure 1. Autocrine CD46-CYT-1 Activation Drives Glycolysis and Oxidative Phosphorylation in CD4+ T Cells

(A) TCR and CD28-induced Th1 cell cytokine production correlates with CD46 ligand C3b generation as assessed 1 hr post activation.

(B) Cytokines produced by (Bi) CD4+ T cells from age- and sex-matched healthy donors (HD1 to HD6) and patients CD46-1 (open circle), CD46-2 (open square),

and CD46-3 (open triangle) or by (Bii) T cells from HDs treated with CD46 siRNA (n = 3 with duplicate samples [mean]).

(C) Basal glycolysis (ECAR) and oxidative phosphorylation (OXPHOS, OCR) rates in resting and activatedCD4+ T cells (Ci) fromCD46-deficient patients (n = 3) and

HDs (n = 6) or from (Cii) HD T cells after CD46-specific siRNA treatment.

(D) Respiratory capacity and glycolysis in T cells from a HD and from patient CD46-2, basally and following mitochondrial perturbation.

(E) CD46 expression in Jurkat T cells transfected with GFP-tagged CD46-CYT1 (Jurkat-BC1) or CD46-CYT2 (Jurkat-BC2) isoforms. (Ei) FACS-assessed surface

expression of GFP-tagged CD46 and (Eii) endogenous (red) and recombinantly overexpressed CD46 (green) by confocal microscopy (n = 3).

(F) Basal glycolysis and OXPHOS levels in Jurkat, Jurkat-BC1, and Jurkat-BC2 cells (n = 3).

(G) CD46-BC1 isoform overexpression restores IFN-g upon TCR activation in Jurkat cells (n = 3, IFN-g measured 3 days post activation).

Magnification (Eii) 3 100. *p < 0.05; **p < 0.01. Error bars represent mean ± SEM. See also Figure S1.
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consumption rate – OCR)), and aerobic glycolysis (extracellular

acidification rate – ECAR) of T cells from the CD46-deficient pa-

tients and six HDs (Figure 1Ci). Compared to controls, non-acti-

vated and CD3+CD28-activated CD4+ T cells from patients

showed a trend toward reduced respiration and glycolysis

(Figure 1Ci), and the increase in OCR and ECAR levels upon

CD3+CD46 activation—which was present in all HDs—was ab-

sent in CD46-deficient individuals (Figure 1Ci). Notably, by

36 hr of activation, similar OCR and ECAR levels were observed

in CD3 and CD3+CD28-activated HD CD4+ T cells (Figures S1Ei

and S1Eii). A comparable reduction in OCR and glycolysis was

observed using HD-derived T cells in which CD46 expression

was knocked down (Figure 1Cii), with the reduction of respective

CD46 expression corresponding with reduction in OCR and

ECAR (not shown). We also observed a parallel reduction in

ATP-coupled andmaximal respiration, as well as maximal glyco-

lytic rate of activated cells, when comparing CD46-deficient

CD4+ T cells to those from HDs (Figure 1D, patient CD46-2; Fig-

ure S1F, summary for all three patients; and Figure S1G for HD

T cells after CD46-specific siRNA treatment).

CD46 is expressed in distinct isoformswith two potential intra-

cellular domains, CYT-1 or CYT-2 (Figure S1H), and CYT-1 is

required for IFN-g production in CD4+ T cells (Le Friec et al.,

2012). To assess whether CYT-1 also mediated the metabolic

changes observed during T cell activation, we used non-manip-

ulated Jurkat T cells (whichmostly express CD46 CYT-2-bearing

isoforms and do not produce IFN-g upon activation), or Jurkat

cells stably overexpressing either a GFP-tagged CD46 isoform

bearing CYT-1 (Jurkat-BC1) or CYT-2 (Jurkat-BC2) (Le Friec

et al., 2012) at equivalent levels (Figure 1Ei), and with normal

cellular distribution (Figure 1Eii). Jurkat-BC1 cells indeed had

increased basal OCR and ECAR compared to non-transfected

or Jurkat-BC2 cells (Figure 1F) and, importantly, this increase

was accompanied by the induction of IFN-g production upon

activation (Figure 1G).

Thus, autocrine C3b-driven activation of CD46 induced the

metabolic changes in human CD4+ T cells that drive Th1 cell

induction.

CD46 Costimulation Is Non-redundant and Operates
Differently from CD28
Mice lack CD46 expression on lymphocytes (Cope et al., 2011),

and CD4+ T cells isolated from transgenic mice expressing

human CD46 in a human-like pattern (Kemper et al., 2001) did

not increase IFN-g or IL-10 production upon activation (Fig-

ure 2A). Thus,mouse T cells are not equippedwith themachinery

for CD46-induced signal transduction, and CD28 is the critical

costimulatory molecule in this species.

Defective Th1 cell induction in CD46-deficient patients could

not be overcome by increasing TCR and CD28 signal strength

(Figure 2B), while TCR- and CD28-driven phosphorylation of

extracellular signal-regulated kinase 1/2 (ERK1/2) was unaf-

fected (Figures 2Ci and 2Cii). Furthermore, although CD46

stimulation, and specifically CYT-1, potentiated TCR-induced

NF-kB activation (Figures 2Di and Dii), it did not induce NK-

kB activation on its own (Figure 2Di) and failed to induce IL-8

secretion (Figure 2E)—two events that are driven by TCR-inde-

pendent CD28 signals (Marinari et al., 2004) and that similarly

occurred in T cells from HDs and CD46-deficient patients (Fig-

ure 2E). These data demonstrated that TCR- and CD28-medi-

ated signals did function properly in CD46-deficient patients

but that these signals were not sufficient for normal Th1 cell

induction.

Upon CD46 activation, CYT-1 and CYT-2 are cleaved and

released intracellularly by g-secretase (Ni Choileain et al.,

2011), and inhibition of g-secretase activity prevents CD46-

driven Th1 cell induction (Figure S2A) (Le Friec et al., 2012).

Because both CYT-1 and CYT-2 of CD46 contain nuclear target-

ing signals (Figure 1H) we assessed whether the tails translocate

into the nucleus upon activation. Using confocal microscopy

(Figures 2Fi and 2Fii) and Image Stream (Figure S2B), we indeed

observed nuclear translocation of both CYT-1 and CYT-2 in acti-

vated T cells. CYT-1 translocation was significantly inhibited by

g-secretase inhibitor treatment in CD3+CD28-activated T cells,

while this treatment prevented CYT-2 nuclear translocation in

CD3+CD46-activated cells (Figure 2Fiii), suggesting that the co-

ordinated CD46 cytoplasmic domain processing and/or nuclear

translocation may be impacted by both CD28 and CD46 stimu-

lation. To mimic CD46 cytoplasmic domain release in CD46-

deficient T cells, we transfected T cells from patient CD46-3

with retroviruses expressing either CYT-1 or CYT-2 only (Fig-

ure 2G), which induced substantially increased IFN-g production

(but not IL-4 or IL-5 production, data not shown) in these cells

(Figure 2H). The unexpected observation that CYT-2 transfection

also rescued IFN-g production in CD46-deficient T cells was

likely due to the fact that cleaved CYT-2 positively regulated

CYT-1 expression, as demonstrated by assessment of both

CYT-1 and CYT-2 protein expression of parental Jurkat T cells

after transfection with each virus alone (Figure S2C).

Together these data demonstrated that CD46 costimulation in

human CD4+ T cells was non-redundant and required nuclear

translocation of its cytoplasmic tails to the nucleus.

(B) Increased TCR and CD28 activation cannot rescue defective Th1 cell induction in CD46-deficient T cells. Cells from HD1 and HD2 and patients CD46-1 and

CD46-3 were activated as indicated and cytokines measured at 36 hr.

(C) TCR and CD28-driven ERK1/2 phosphorylation occurs optimally in CD46-deficient T cells as assessed by (Ci) western blot and (Cii) densitometric analyses

30 min post activation.

(D) CD46 induced canonical NF-kB activation utilizing (Di) T cells transfected with a NF-kB luciferase reporter plasmid and NF-kB activation measured at 1 hr post

activation and measuring (Dii) NF-kB activation in Jurkat, Jurkat-BC1, and Jurkat-BC2 cells (n = 4).

(E) CD28 induces normal IL-8 secretion in T cells from patients at 36 hr post activation.

(F) CD46 CYT-1 and CYT-2 translocate to the nucleus upon cleavage by g-secretase as assessed by (Fi) confocal microscopy using CYT-1 and CYT-2-specific

antibodies with analyses of colocalization events in (Fii) the absence or (Fiii) presence of g-secretase inhibition (n = 3).

(G and H) Transfection of CD46 intracellular domains rescues IFN-g production in T cells from patient CD46-3.

(G and H) Transfection efficiency (G) of T cells isolated from patient CD46-3 transfected with retroviruses expressing either CYT-1 or CYT-2 (or the GFP reporter

gene) and (H) IFN-g production by CD4+ T cells from patient CD46-3 after retroviral transfection at 24 hr post CD3+CD28 activation.

*p < 0.05; **p < 0.01; ***; p < 0.005; ****p < 0.001; NS, statistically not significant. Error bars represent mean ± SEM. See also Figure S2.
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CD46 Induces Nutrient Influx via Glucose and Amino
Acid Transporter Upregulation
To identify the CD46-induced molecular pathways driving the

observed metabolic events, we performed gene expression ar-

rays on mRNA isolated from CD3+CD46-activated T cells from

patient CD46-3. Aligning with the functional T cell phenotype

(severely reduced glycolysis and OXPHOS, Figure 1Ci), genes

associated with regulation of metabolic processes were signifi-

cantly enriched in the HD compared to the patient by gene set

enrichment analysis (GSEA) (Subramanian et al., 2005) (Fig-

ure 3A). Similarly, Gene Ontology analysis of the 403 transcripts

differentially expressed between CD3+CD46-activated T cells of

the HD and patient CD46-3 (Table S3) revealed that almost 30%

of these genes (118 genes, Table S4) were functionally involved

in the regulation ofmetabolic processes (Figures S3Ai and S3Aii).

Furthermore, Ingenuity Pathway Analysis suggested that T cells

from patient CD46-3 lacked activation-induced expression of

several key AA transporters. Specifically, of the top five gene net-

works modeled by the software, two were functionally involved

in AA metabolism (Figures 3Bi and 3Bii and Figures S3Bi and

S3Bii). Upregulation of the glucose transporter GLUT1 (Macin-

tyre et al., 2014) and L-type AA transporter LAT1 (SLC7A5;

reduced in T cells from patient CD46-3 [Figure 3Bii]) are required

for successful CD4+ T cell activation in mice (Sinclair et al., 2013)

and humans (Hayashi et al., 2013). When assessing activated

T cells 36 hr post stimulation for the expression of GLUT1 and

LAT1, we found that CD3+CD46 activation induced strongest

expression of these channels when compared to CD3 or

CD3+CD28-activated cells (Figures 3Ci and 3Cii), while CD46

activation alone had no effect on GLUT1 or LAT1 expression

(data not shown). Accordingly, T cells isolated from patient

CD46-3, and T cells from HDs in which CD46 expression was

decreased by siRNA treatment, had impaired GLUT1 and LAT1

upregulation (Figures 3Ciii and 3D). Whereas CD46 potentiated

TCR-driven GLUT1 expression, LAT1 upregulation seemed to

require CD46-driven signals, as only CD46 co-engagement

induced significant LAT1 expression in T cells (Figure 3Cii).

This aligns with the observation that CD3+CD46 activa-

tion moderately increased glucose uptake over CD3 and

CD3+CD28-activated T cells (Figure 3E), but that LAT1-depen-

dent uptake of the AAs Leucine and Phenylalanine at 36 hr

post activation was significantly enhanced by CD46 costimula-

tion (Figure 3F, and Figure S3C for a time course of GLUT1

and LAT1 expression and glucose and AA uptake). Consistent

with the role of CD46 CYT-1 in driving glycolysis and OXPHOS,

CYT-1, but not CYT-2, induced GLUT1 and LAT1 upregulation

as demonstrated by the increased steady-state expression

specifically in Jurkat-BC1 cells (Figures S3Di–S3Diii), and their

concurrently increased basal uptake of glucose, Leucine, and

Phenylalanine (Figures S3E and S3F).

These data demonstrated that CD46 CYT-1 costimulation

during TCR activation was required for GLUT1 and LAT1 expres-

sion, upregulation, and subsequent glucose and AA uptake in

human CD4+ T cells.

CD46 Is Required for mTORC1 Activity
Since glucose and AA uptake induces mTORC1 activation

(Bachar et al., 2009; Sancak et al., 2010), we assessed whether

CD46 impacts mTORC1 activity by measuring the phosphoryla-

tion of the mTORC1 downstream target p70S6K (position T389)

(Matheny and Adamo, 2009). At 1 hr post activation, CD3,

CD3+CD28, and CD3+CD46 activation each induced significant

increases in p70S6K phosphorylation when compared to resting

cells. Notably, CD46 costimulation not only resulted in the highest

levels of p-p70S6K at 1 hr post activation, but also sustained

p70S6K phosphorylation consistently up to at least 36 hr post

activation (Figures 4Ai and 4Aii). The observed CD46-mediated

p70S6K phosphorylation was dependent on mTORC1, as

the mTORC1 inhibitor Rapamycin abrogated CD46-mediated

p70S6K phosphorylation (Figures 4Bi and 4Bii). Furthermore,

mTORC1 activation supports upregulation of GLUT1 (Bhaskar

et al., 2009) and LAT1 (Roos et al., 2009), and in accordance

with these data, the addition of Rapamycin during CD3+CD46

stimulation reduced the expression of these nutrient transporters

(Figure 4C). The dependence of CD4+ T cells on CD46 costimula-

tion for normal mTORC1 function was further underscored by the

inability of T cells from patient CD46-3 to induce either mTOR or

p70S6K phosphorylation at substantial levels under any activa-

tion condition tested (Figures 4D and S4), and by a significant

reduction in mTOR and p70S6K phosphorylation in T cells from

HDs treated with CD46-specific siRNA (not shown). In keeping

with the fact that CD46 CYT-1 was the driver of nutrient influx,

glycolysis, and OXPHOS in T cells, Jurkat-BC1 cells had higher

mTOR and p70S6K phosphorylation levels compared to Jukat-

BC2 cells or the parental Jurkat line (Figure 4E).

CD46 Activation Supports LAMTOR5-Driven Assembly
of Ragulator-Rag-mTORC1
The nature of the Ragulator complex activating mTORC1 in hu-

man CD4+ T cells is undefined. LAMTOR5 is a recently discov-

ered member of the Ragulator complex (Bar-Peled et al., 2012)

and, although LAMTOR5 has previously not been described

in T cells, the corresponding mRNA was induced in gene

arrays performed using non-activated and CD3+CD46-activated

CD4+ T cells from HDs (data not shown). Indeed, measurement

of LAMTOR5 protein in purified healthy CD4+ T cells established

Figure 3. CD46 Mediates Glucose and AA Channel Expression and Nutrient Influx in CD4+ T Cells

(A and B) Gene expression array and Ingenuity Pathway Analysis (IAP) comparison of CD46-sufficient and -deficient CD4+ T cells activated for 2 hr with anti-

CD3+CD46mAbwith (A) gene set enrichment analysis (GSEA) and (B) extract of IPA output showing (Bi) membrane-associated genes involved in AAmetabolism

(full figure in Figure S2B) and (Bii) a heatmap of those genes.

(C) GLUT1 and LAT1 expression on T cells from HDs 36 hr post activation assessed by (Ci) western blotting with (Cii) the corresponding statistical analyses via

densitometric measurement, and (Ciii) from patient CD46-3 measured by FACS (n = 3).

(D) CD46 silencing prevents normal GLUT1 and LAT1 expression (n = 4; 72 hr post activation).

(E and F) Glucose and AA uptake upon CD46 activation with (E) glucose uptake assessedwith or without addition of competing unlabeled 2-DG and (F) AA uptake

measured with or without addition of a LAT1 inhibitor (BCH) (n = 3).

*p < 0.05; **p < 0.01; ***p < 0.005; ****p < 0.001. Error bars represent mean ± SEM. See also Figure S3.
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Figure 4. CD46 Regulates mTORC1 Activity in CD4+ T Cells

(A) CD46 activation sustains p70S6K phosphorylation as assessed by (Ai) western blotting with (Aii) the corresponding statistical analyses via densitometric

measurement of band intensities (n = 4–5). (B) Effect of rapamycin on p70S6K phosphorylation (p-p70S6K) at 36 hr with (Bi) a representative FACS analysis of

n = 3, and (Bii) depicting their statistical analysis. (C) Effect of Rapamycin on GLUT1 and LAT1 expression. T cells were activated as under (B) and expression of

GLUT1 (upper panel) and LAT1 (lower panel) measured (n = 4).

(D) mTOR (p-mTOR) and p70S6K phosphorylation in T cells from HD1-4 and patient CD46-3 36 hr post activation.

(E) p-mTOR and p-p70S6K levels in Jurkat, Jurkat-BC1, and Jurkat-BC2 cells (n = 3).

*p < 0.05, **p < 0.01; ***p < 0.005. Error bars represent mean ± SEM. See also Figure S4.
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that CD46 costimulation induced a significant increase in

LAMTOR5 (Figures 5A and S5A for a time-course), while this in-

crease was absent in T cells from patient CD46-3 (Figure 5B),

and in T cells from HDs where CD46 expression was decreased

by siRNA technique (Figure 5C). Confocal microscopy studies

with analyses of protein colocalization coefficients demon-

strated that TCR activation, specifically with CD46 costimula-

tion, drove colocalization of LAMTOR5, the Ragulator complex

partner GTPase RagC, and mTOR on lysosomes (LAMP1)

(Figures 5D and 5E), with reduction of these events in T cells

from patient CD46-3 (Figure 5D). Results obtained from CD46

isoform-transfected Jurkat cells confirmed that LAMTOR5

expression was increased by CYT-1 (Figures S5Bi and S5Bii),

while the expression of RagC remained largely unaffected by

CD46 signaling (Figure S5C).

The central role for LAMTOR5 in mTORC1 lysosomal translo-

cation was further confirmed by the finding that knockdown of

LAMTOR5 protein in T cells from HDs reduced colocalization

for all assessed proteins of this complex (Figures 5F and 5G)

and led to a significant decrease in LAT1 expression (by about

50%, Figure S5D) and p70S6K phosphorylation by about 75%

in CD3+CD46-activated T cells (Figure S5E).

These results identified Ragulator LAMTOR5 as a critical

mTORC1 assembly platform in human CD4+ T cells.

CD46 Isoform Expression Correlates with Metabolic
Changes in the Th1 Cell Life Cycle
CD46 costimulation is not only key for IFN-g production in human

Th1 cells but also for the induction of IL-10 coproduction and the

switch toward their (self)regulating and contracting ‘‘life cycle’’

phase (Cardone et al., 2010). Thus, following T cell activation via

CD3+CD46 four populations of cells are sequentially induced

with distinct cytokine profiles: IFN-g+, IFN-g+IL-10+, IL-10+, and

IFN-g–IL-10–. Accordingly, T cells from CD46-deficient patients

have impaired production of both IFN-g and IL-10 but have no

defect in Th2 responses (IL-4 and IL-5) (Figure 1B and Le Friec

et al., 2012). In line with the requirement of glucose and AA uptake

for early IFN-g production (Pearce et al., 2013; Sinclair et al.,

2013), when we activated human CD4+ T cells from healthy do-

nors via CD3, CD3+CD28, or CD3+CD46, we found that the pres-

ence of 2-DG (which inhibits glycolysis) or the LAT1 inhibitor BCH

reduced production of IFN-g and IL-10 under all activation condi-

tions (Figures 6A and 6B, upper and lower panels, respectively).

Also, inhibition of mTORC1 with Rapamycin and LAMTOR5 pro-

tein knockdown through mRNA silencing reduced both IFN-g

and IL-10 production (Figures 6C and 6D)—but did not signifi-

cantly affect IL-4 and IL-17 secretion (data not shown).

Resting CD4+ T cells expressed all four isoforms of CD46:

BC1, C1, BC2, and C2 (Figure S1H). Upon activation, however,

the isoform expression pattern changed, with an increase in

CYT-1-bearing forms (i.e., BC1 and C1) (Liszewski et al., 2013)

(Figure 7Ai). Furthermore, several studies have implicated

CYT-1 of CD46 as a Th1 cell ‘‘driver’’ (Le Friec et al., 2012; Ni

Choileain et al., 2011). Because this parallels our observation

that specifically CYT-1 of CD46 was required for mTORC1 acti-

vation, we hypothesized that CYT-1 versus CYT-2 expression is

different in IFN-g+, IFN-g+IL-10+, IL-10+, and IFN-g–IL-10– sub-

populations and that expression changes with their progression

through the Th1 cell life cycle. To address this, we sorted the Th1

cell subpopulations resulting from CD3+CD46 activation and as-

sessed respective CD46mRNACYT-1 versus CYT-2 expression

patterns. CYT-1 expression increased over CYT-2 expression

in IFN-g+ and IFN-g+IL-10+ populations, while IL-10+ T cells

switched back toward a CYT-2 predominant profile (Figures

7Ai and 7Aii). Moreover, the expression of GLUT1, LAT1, and

LAMTOR5 and the phosphorylation of mTOR and p70S6K,

as well as OXPHOS and glycolysis levels, all paralleled the

expression kinetics of CYT-1—with all being also increased in

IFN-g+ and IFN-g+IL-10+ subsets, while returning to basal levels

in IL-10+ and IFN-g–IL-10– cells (Figures 7B–7D).

These results demonstrated that the temporal changes inCD46

isoform expression induced upon T cell activation mediated the

metabolic events specific to the induction, effector function, and

contraction phases of Th1 cells and, thus, demarcated the human

Th1 cell life cycle phases (Figures S6A and S6B).

DISCUSSION

Glucose metabolism, OXPHOS, AA influx, and differential activa-

tion of the metabolic checkpoint kinase mTOR each play impor-

tant roles in enabling successful T cell immunity (Jones and

Thompson, 2007; MacIver et al., 2013; Pollizzi and Powell,

2014). However, in humans the receptor(s) triggering, and themo-

lecular events mediating, distinct immune-metabolic activities

in vivo are not well defined. Here we provide a molecular frame-

work that integrates the complement receptor CD46 with meta-

bolic reprogramming required for human Th1 cell induction, and

we demonstrate dysregulation of this key metabolic program in

patients with reduced CD46 expression. We suggest a model in

which TCR activation, which induces the local generation of

CD46 ligand C3b (Liszewski et al., 2013), increases expression

of CD46 isoforms bearing CYT-1. CD46 CYT-1-driven signals

then mediate upregulation of GLUT1 and, more importantly,

LAT1, allowing for increased glucose and AA influx into the cell.

Increased expression of LAMTOR5 and assembly of the lyso-

some-based machinery simultaneously enables AA sensing via

mTORC1. mTORC1 activation and downstream events, including

further induction of glycolysis andOXPHOS, then support Th1 cell

maturation and IFN-g production. During Th1 cell contraction and

induction of IL-10 coexpression, CD46 isoform expression of

CD4+ T cells reverts to a CYT-2 predominant pattern, accompa-

nied by reduced expression of GLUT1 and LAT1, and downregu-

lation of OXPHOS and glycolysis. This model aligns with the facts

that the SLC2A1 gene is hypermethylated in patient CD46-3; that

high GLUT1 expression is selectively required for effector but not

regulatory T (Treg) cell responses (Macintyre et al., 2014); that

Treg cells do not upregulate CD46 CYT-1 upon activation, and

that Treg cell numbers and functions are normal in CD46-deficient

patients (Liszewski et al., 2013).

A complement receptor or regulator serving as the murine

‘‘CD46 homolog’’ with regard to Th1 cell regulation has not

been identified, and published work indicates that CD28 drives

glycolysis and OXPHOS as required for effector T cells function

in mice. CD28 can also regulate GLUT1 expression and glycol-

ysis (Frauwirth et al., 2002; Jacobs et al., 2008) and LAT1 induc-

tion (Hayashi et al., 2013) in activated human CD4+ T cells. How-

ever, because costimulation via CD28 potentiates TCR-induced

autocrine generation of C3b, and CD28 signals are not sufficient
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to induce Th1 cell responses in CD46-deficient T cells, increased

autocrine CD46 engagement plays a key role in the CD28-driven

nutrient uptake in CD46-sufficient cells. Nonetheless, a cooper-

ation betweenCD28- andCD46-intrinsic molecular events jointly

supporting optimal Th1 cell induction remains an important

possibility, perhaps with CD28 as an upstream regulator of the

autocrine ‘‘C3-CD46’’ axis in T cells.

Figure 5. LAMTOR5 Is Required for mTORC1 Complex Assembly in Human CD4+ T Cells

(A–C) LAMTOR5 expression in T cells from (A) a healthy donor (HD) assessed by western blotting, (B) in patient CD46-3 and a HD by FACS analysis, and in (C) HD

T cells treated with CD46-specific siRNA at 72 hr post activation.

(D) CD46 activation increases LAMTOR5-dependent assembly of the lysosome-based machinery enabling amino acid sensing via mTORC1 as assessed at 36 hr

post activation by confocal microscopy. For the HDs, one representative example is shown for n = 7. Staining of RAGC could not be performed on cells from

patient CD46-3.

(E) Statistical analysis for the colocalization events in HD T cells of the proteins assessed under (D) (n = 7).

(F) Reduction of LAMTOR5 expression prevents normal mTORC1 assembly measured at 36 hr post activation by (F) confocal microscopy, and (G) colocalization

of proteins measured with the Pearson’s Correlation Coefficient method. Results shown in (F) and (G) are representative n = 5.

Magnification (C and E) 3 100. *p < 0.05; **p < 0.01; ***p < 0.005. Error bars represent mean ± SEM. See also Figure S5.

Figure 6. CD46-Driven Glucose and Amino

Acid Influx and mTORC1-Activity Are Crit-

ical to Human Th1 Cell Induction

(A and B) Th1 cell induction (upper panels) and

IL-10 switching (lower panels) assessed at 36 hr

post activation in the presence of 2-deoxyglucose

(2-DG) and BCH.

(C) Effect of mTORC1 inhibition on Th1 cell in-

duction at 36 hr post activation.

(D) Impact of LAMTOR5-silencing on Th1 cell

induction. CD4+ T cells transfected with siRNAs

as shown were activated as depicted for 36 hr and

analyzed for IFN-g and IL-10 production.

Data shown in (A)–(D) are n = 3. NA, non-activated.

*p < 0.05; **p < 0.01; ***p < 0.005; ****p < 0.001.

Error bars represent mean ± SEM.

CD4+ T cell subsets have distinct meta-

bolic requirements. Effector T cells de-

mand high levels of glycolysis, whereas

Treg cells are more dependent on

OXPHOS, and mTORC1 activity is

required for Th1 and Th17 cell responses,

whereas mTORC2 drives Th2 cell func-

tion (Delgoffe et al., 2009; Michalek

et al., 2011; Shi et al., 2011). Congruent

with this, decreased expression of CD46

impacted proportionally on mTORC1 ac-

tivity and Th1 cell induction, whereas Th2

cell responses remained unaffected.

Interestingly, only complete absence of

CD46 led to failure of Th17 cell induction,

suggesting metabolic threshold differ-

ences between induction of Th1 and

Th17 cell effector populations. As T cells

from CD46-deficient patients proliferate

normally (not shown), these differences

likely relate to non-bioenergetic aspects

of subset-specific metabolic reprogram-

ming. Indeed, recent work shows that

expression of the pyruvate dehydroge-

nase (PDH) kinase 1 in Th17, but not

Th1, cells is a hallmark of their distinct metabolic programs

(Gerriets et al., 2015). Our observation that cleaved cytoplasmic

domains of CD46 translocated to the nucleus makes it a possi-

bility that they function within transcription factor- or regulator-

complexes, directly controlling metabolism.

Complement is among the evolutionary oldest effector im-

mune systems and preceded the appearance of B and T cells
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(Le Friec and Kemper, 2009). The recent discovery that comple-

ment activation and function also occurs within cells evokes the

possibility that complement evolved initially as an intracellular

stress detection system (Kolev et al., 2014). A link between com-

plement and metabolic checkpoint kinases, such as mTOR, is

thus plausible. The possibility for such a functional cooperation

is further supported by the fact that CD46 is a key constituent

of a sensory network integrating signals to respond to variable

nutrient environments. For example, Notch regulates OXPHOS

and glycolysis in cancer cells, pre-T cells, andmemory cells (Cio-

fani and Zúñiga-Pflücker, 2005; Landor et al., 2011; Maekawa

et al., 2015), and we have previously shown that interaction of

CD46 and the Notch-family member Jagged1 regulates Th1

cell activation (Le Friec et al., 2012). Furthermore, CD46 facili-

tates the assembly of the IL-2 and IL-7 receptor complexes in

T cells (Le Friec et al., 2012), which contributes to increased

GLUT1 expression (Wofford et al., 2008) and integrates ‘‘high

environmental IL-2’’ signals into a Th1 cell shutdown program.

Our results may also suggest reevaluating the role of CD46 in

infection. CD46 serves as receptor for several pathogens (Catta-

neo, 2004) anddogmastates that pathogensbindingCD46abuse

the receptor’s ability to promote IL-10 switching, thus furthering

an infection-promoting environment (Cope et al., 2011). However,

recent work demonstrates that, in epithelial cells, adenoviruses

induce glycolysis, thereby supporting the metabolic demands of

viral replication (Thai et al., 2014). Thus, the interplay of pathogens

andCD46mayhavea ‘‘metabolicdimension,’’ andunderstanding

the signals regulating CD46mRNA splicing and/or autocrine C3b

generation may also deliver novel tools to therapeutically exploit

CD4+ T cell metabolic reprogramming.

EXPERIMENTAL PROCEDURES

Donors and Patients

Blood samples were obtained with ethical and institutional approvals (Wands-

worth Research Ethics Committee, REC number 09/H0803/154). T cells were

purified from buffy coats (NHSBT, Tooting, UK; Blood Donor Centre, Basel,

Switzerland) or blood samples from healthy volunteers after informed consent.

Three adult CD46-deficient patients with confirmed diagnosis of hemolytic

uremic syndrome (HUS) and with clinically low Ig (IgG1 and IgG2) levels and

recurrent chest infections (CD46-1 and CD46-3) were recruited in France

and blood samples were obtained with local ethical approval (Couzi et al.,

2008; Fremeaux-Bacchi et al., 2006; Le Friec et al., 2012). The patients had

neither infection nor active hemolytic uremic syndrome at the time of blood

sampling. In all experiments that involved T cells fromCD46-deficient patients,

T cells from age- and sex-matched healthy volunteers were used as controls.

Figure 7. Switches in CD46 Isoform-Expression Correlate with Expected Metabolic Changes during the Th1 Cell Life Cycle

(A) CD46 isoform mRNA levels in (Ai) non-activated (NA) and activated T cells (36 hr, left panel) and in sorted IFN-g+, IFN-g+IL-10+, and IL-10+ Th1 cell sub-

populations (activated for 36 hr, right panel), and (Aii) ratio of CYT-1 to CYT-2 tail mRNA expression.

(B–D) Nutrient channel expression, mTORC1 activity and glycolysis and OXPHOS levels in IFN-g+, IFN-g+IL-10+, and IL-10+ Th1 cell subpopulations.

Data in (A)–(D) are derived from n = 3. *p < 0.05; **p < 0.01. See also Figure S6.
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For details on T cell isolation, activation, and cytokine measurements, see

Supplemental Experimental Procedures.

Antibodies, Proteins, and Inhibitors

Details are included in the Supplemental Experimental Procedures.

OCR and ECAR Measurements

For analysis of the OCR (in pMoles/min) and ECAR (in mpH/min), the Seahorse

XFe-96 (primary cells) or Seahorse XF-24 (Jurkat cell lines) metabolic extracel-

lular flux analyzers were used (Seahorse Bioscience, North Billerica, MA) with

detailed instructions in Supplemental Experimental Procedures and metabolic

parameters calculated as described in Figure S1.

Glucose and Amino Acid Uptake Assays

Details are included in the Supplemental Experimental Procedures.

Confocal Microscopy and Colocalization Analyses

Assays were performed as previously described (Liszewski et al., 2013), with

further details in Supplemental Experimental Procedures.

mRNA Silencing

siRNA targeting human LAMTOR5 (SR307168), CD46 (SR302841), and nega-

tive control scrambled siRNA were purchased from Origene (Rockville, MD)

and delivered into primary human CD4+ T cells by transfection using Lipofect-

amine RNAiMAX (Life Technologies, Paisley, UK) according to the manufac-

turer-provided protocol. LAMTOR5 and CD46 protein knockdown were

consistently about 70% and between 50%–35%, respectively.

CD46 Isoform-Specific RT-PCR and Lentiviral Transfection of T

Cells with CD46 CYT-1 or CYT-2

Details are included in the Supplemental Experimental Procedures.

Gene Arrays and Array Analyses

Transcriptome profiling was performed using Illumina HT12V4 microarrays

(Illumina, Great Chesterford, UK) on technical triplicates using CD3+CD46-

activated T cells isolated from patient CD46-3 and an age- and sex-matched

healthy donor. Expression data were analyzed using Partek Genomics Suite

(Partek, St. Louis, USA) version 6.6, Ingenuity Pathway Analysis (QIAGEN)

and Gene Set Enrichment Analysis, GSEA (Subramanian et al., 2005) (Broad

Institute of MIT and Harvard). For details, see Supplemental Experimental Pro-

cedures. The raw data of all arrays are deposited with the Gene Expression

Omnibus (GEO) repository under the accession number GEO: GSE69090.

Statistical Analysis

Analyses were performed on GraphPad Prism (La Jolla, CA). Data are pre-

sented as mean ± SD or median (interquartile range, IQR) for parametric and

non-parametric data, respectively, and compared using paired t tests with

Bonferroni correction for multiple comparisons, Wilcoxon signed rank tests,

the two-tailed Mann-Whitney test, one-way or two-way ANOVA with a Tukey

multiple comparison post hoc test, as appropriate. p values < 0.05 denoted

statistical significance throughout.

ACCESSION NUMBERS

The raw data of all arrays are deposited with the Gene Expression Omnibus

(GEO) repository under the accession number GEO: GSE69090.

SUPPLEMENTAL INFORMATION

Supplemental Information includes four tables, six figures, and Supplemental

Experimental Procedures and can be found with this article online at http://dx.

doi.org/10.1016/j.immuni.2015.05.024.
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