70 research outputs found

    Isolation of chromatin from dysfunctional telomeres reveals an important role for Ring1b in NHEJ-mediated chromosome fusions

    Get PDF
    When telomeres become critically short, DNA damage response factors are recruited at chromosome ends, initiating a cellular response to DNA damage. We performed proteomic isolation of chromatin fragments (PICh) in order to define changes in chromatin composition that occur upon onset of acute telomere dysfunction triggered by depletion of the telomere-associated factor TRF2. This unbiased purification of telomere-associated proteins in functional or dysfunctional conditions revealed the dynamic changes in chromatin composition that take place at telomeres upon DNA damage induction. On the basis of our results, we describe a critical role for the polycomb group protein Ring1b in nonhomologous end-joining (NHEJ)-mediated end-to-end chromosome fusions. We show that cells with reduced levels of Ring1b have a reduced ability to repair uncapped telomeric chromatin. Our data represent an unbiased isolation of chromatin undergoing DNA damage and are a valuable resource to map the changes in chromatin composition in response to DNA damage activation

    A siRNA-Based Screen for Genes Involved in Chromosome End Protection

    Get PDF
    Telomeres are nucleoprotein complexes which protect the ends of linear chromosomes from detection as DNA damage and provide a sequence buffer against replication-associated shortening. In mammals, telomeres consist of repetitive DNA sequence (TTAGGG) and associated proteins. The telomeric core complex is called shelterin and is comprised of the proteins TRF1, TRF2, POT1, TIN2, TPP1 and RAP1. Excessive telomere shortening or de-protection of telomeres through the loss of shelterin subunits allows the detection of telomeres as DNA damage, which can be visualized as DNA damage protein foci at chromosome ends called TIF (Telomere Dysfunction-Induced Foci). We sought to exploit the TIF phenotype as marker for telomere dysfunction to identify novel genes involved in telomere protection by siRNA-mediated knock-down of a set of 386 candidates. Here we report the establishment, specificity and feasibility of such a screen and the results of the genes tested. Only one of the candidate genes showed a unique TIF phenotype comparable to the suppression of the main shelterin components TRF2 or TRF1 and that gene was identified as a TRF1-like pseudogene. We also identified a weak TIF phenotype for SKIIP (SNW1), a splicing factor and transcriptional co-activator. However, the knock-down of SKIIP also induced a general, not telomere-specific DNA damage response, which complicates conclusions about a telomeric role. In summary, this report is a technical demonstration of the feasibility of a cell-based screen for telomere deprotection with the potential of scaling it to a high-throughput approach

    53BP1 promotes non-homologous end joining of telomeres by increasing chromatin mobility

    Get PDF
    Double-strand breaks activate the ataxia telangiectasia mutated (ATM) kinase, which promotes the accumulation of DNA damage factors in the chromatin surrounding the break. The functional significance of the resulting DNA damage foci is poorly understood. Here we show that 53BP1 (also known as TRP53BP1), a component of DNA damage foci, changes the dynamic behaviour of chromatin to promote DNA repair. We used conditional deletion of the shelterin component TRF2 (also known as TERF2) from mouse cells (TRF2fl/-) to deprotect telomeres, which, like double-strand breaks, activate the ATM kinase, accumulate 53BP1 and are processed by non-homologous end joining (NHEJ). Deletion of TRF2 from 53BP1-deficient cells established that NHEJ of dysfunctional telomeres is strongly dependent on the binding of 53BP1 to damaged chromosome ends. To address the mechanism by which 53BP1 promotes NHEJ, we used time-lapse microscopy to measure telomere dynamics before and after their deprotection. Imaging showed that deprotected telomeres are more mobile and sample larger territories within the nucleus. This change in chromatin dynamics was dependent on 53BP1 and ATM but did not require a functional NHEJ pathway. We propose that the binding of 53BP1 near DNA breaks changes the dynamic behaviour of the local chromatin, thereby facilitating NHEJ repair reactions that involve distant sites, including joining of dysfunctional telomeres and AID (also known as AICDA)-induced breaks in immunoglobulin class-switch recombination

    Cellular senescence and chromatin organisation

    Get PDF
    Despite the potential importance of senescence in tumour suppression, its effector mechanism is poorly understood. Recent studies suggest that alterations in the chromatin environment might add an additional layer of stability to the phenotype. In this review, recent discoveries on the interplay between senescence and chromatin biology are overviewed

    Progressive Telomere Dysfunction Causes Cytokinesis Failure and Leads to the Accumulation of Polyploid Cells

    Get PDF
    Most cancer cells accumulate genomic abnormalities at a remarkably rapid rate, as they are unable to maintain their chromosome structure and number. Excessively short telomeres, a known source of chromosome instability, are observed in early human-cancer lesions. Besides telomere dysfunction, it has been suggested that a transient phase of polyploidization, in most cases tetraploidization, has a causative role in cancer. Proliferation of tetraploids can gradually generate subtetraploid lineages of unstable cells that might fire the carcinogenic process by promoting further aneuploidy and genomic instability. Given the significance of telomere dysfunction and tetraploidy in the early stages of carcinogenesis, we investigated whether there is a connection between these two important promoters of chromosomal instability. We report that human mammary epithelial cells exhibiting progressive telomere dysfunction, in a pRb deficient and wild-type p53 background, fail to complete the cytoplasmatic cell division due to the persistence of chromatin bridges in the midzone. Flow cytometry together with fluorescence in situ hybridization demonstrated an accumulation of binucleated polyploid cells upon serial passaging cells. Restoration of telomere function through hTERT transduction, which lessens the formation of anaphase bridges by recapping the chromosome ends, rescued the polyploid phenotype. Live-cell imaging revealed that these polyploid cells emerged after abortive cytokinesis due to the persistence of anaphase bridges with large intervening chromatin in the cleavage plane. In agreement with a primary role of anaphase bridge intermediates in the polyploidization process, treatment of HMEC-hTERT cells with bleomycin, which produces chromatin bridges through illegimitate repair, resulted in tetraploid binucleated cells. Taken together, we demonstrate that human epithelial cells exhibiting physiological telomere dysfunction engender tetraploid cells through interference of anaphase bridges with the completion of cytokinesis. These observations shed light on the mechanisms operating during the initial stages of human carcinogenesis, as they provide a link between progressive telomere dysfunction and tetraploidy

    Pathway aberrations of murine melanoma cells observed in Paired-End diTag transcriptomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Melanoma is the major cause of skin cancer deaths and melanoma incidence doubles every 10 to 20 years. However, little is known about melanoma pathway aberrations. Here we applied the robust Gene Identification Signature Paired End diTag (GIS-PET) approach to investigate the melanoma transcriptome and characterize the global pathway aberrations.</p> <p>Methods</p> <p>GIS-PET technology directly links 5' mRNA signatures with their corresponding 3' signatures to generate, and then concatenate, PETs for efficient sequencing. We annotated PETs to pathways of KEGG database and compared the murine B16F1 melanoma transcriptome with three non-melanoma murine transcriptomes (Melan-a2 melanocytes, E14 embryonic stem cells, and E17.5 embryo). Gene expression levels as represented by PET counts were compared across melanoma and melanocyte libraries to identify the most significantly altered pathways and investigate the expression levels of crucial cancer genes.</p> <p>Results</p> <p>Melanin biosynthesis genes were solely expressed in the cells of melanocytic origin, indicating the feasibility of using the PET approach for transcriptome comparison. The most significantly altered pathways were metabolic pathways, including upregulated pathways: purine metabolism, aminophosphonate metabolism, tyrosine metabolism, selenoamino acid metabolism, galactose utilization, nitrobenzene degradation, and bisphenol A degradation; and downregulated pathways: oxidative phosphorylation, ATPase synthesis, TCA cycle, pyruvate metabolism, and glutathione metabolism. The downregulated pathways concurrently indicated a slowdown of mitochondrial activities. Mitochondrial permeability was also significantly altered, as indicated by transcriptional activation of ATP/ADP, citrate/malate, Mg<sup>++</sup>, fatty acid and amino acid transporters, and transcriptional repression of zinc and metal ion transporters. Upregulation of cell cycle progression, MAPK, and PI3K/Akt pathways were more limited to certain region(s) of the pathway. Expression levels of c-<it>Myc </it>and <it>Trp53 </it>were also higher in melanoma. Moreover, transcriptional variants resulted from alternative transcription start sites or alternative polyadenylation sites were found in <it>Ras </it>and genes encoding adhesion or cytoskeleton proteins such as integrin, β-catenin, α-catenin, and actin.</p> <p>Conclusion</p> <p>The highly correlated results unmistakably point to a systematic downregulation of mitochondrial activities, which we hypothesize aims to downgrade the mitochondria-mediated apoptosis and the dependency of cancer cells on angiogenesis. Our results also demonstrate the advantage of using the PET approach in conjunction with KEGG database for systematic pathway analysis.</p

    Genome-wide Association Analysis in Humans Links Nucleotide Metabolism to Leukocyte Telomere Length

    Get PDF
    Leukocyte telomere length (LTL) is a heritable biomarker of genomic aging. In this study, we perform a genome-wide meta-analysis of LTL by pooling densely genotyped and imputed association results across large-scale European-descent studies including up to 78,592 individuals. We identify 49 genomic regions at a false dicovery rate (FDR) 350,000 UK Biobank participants suggest that genetically shorter telomere length increases the risk of hypothyroidism and decreases the risk of thyroid cancer, lymphoma, and a range of proliferative conditions. Our results replicate previously reported associations with increased risk of coronary artery disease and lower risk for multiple cancer types. Our findings substantially expand current knowledge on genes that regulate LTL and their impact on human health and disease.Peer reviewe
    corecore