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Abstract

Malaria parasites elude eradication attempts both within the human host and across nations. At the individual level,
parasites evade the host immune responses through antigenic variation. At the global level, parasites escape drug pressure
through single nucleotide variants and gene copy amplification events conferring drug resistance. Despite their importance
to global health, the rates at which these genomic alterations emerge have not been determined. We studied the complete
genomes of different Plasmodium falciparum clones that had been propagated asexually over one year in the presence and
absence of drug pressure. A combination of whole-genome microarray analysis and next-generation deep resequencing
(totaling 14 terabases) revealed a stable core genome with only 38 novel single nucleotide variants appearing in seventeen
evolved clones (avg. 5.4 per clone). In clones exposed to atovaquone, we found cytochrome b mutations as well as an
amplification event encompassing the P. falciparum multidrug resistance associated protein (mrp1) on chromosome 1. We
observed 18 large-scale (.1 kb on average) deletions of telomere-proximal regions encoding multigene families, involved
in immune evasion (9.561026 structural variants per base pair per generation). Six of these deletions were associated with
chromosomal crossovers generated during mitosis. We found only minor differences in rates between genetically distinct
strains and between parasites cultured in the presence or absence of drug. Using these derived mutation rates for P.
falciparum (1.0–9.761029 mutations per base pair per generation), we can now model the frequency at which drug or
immune resistance alleles will emerge under a well-defined set of assumptions. Further, the detection of mitotic
recombination events in var gene families illustrates how multigene families can arise and change over time in P. falciparum.
These results will help improve our understanding of how P. falciparum evolves to evade control efforts within both the
individual hosts and large populations.
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Introduction

Although the global burden of malaria has declined over the last

few years to 216 million cases and 655,000 deaths in 2010 [1], the

overall goal of global eradication is still out of reach. Emerging

resistance to artemisinin, a frontline chemotherapeutic for which

resistance is not widespread, has recently been reported along the

Thai-Cambodia border (reviewed in [2]). Furthermore, RTS,S, the

most advanced vaccine candidate in development, is only minimally

effective and does not induce long-lived sterile immunity [3].

A primary reason why malaria is difficult to control is its

genome’s ability to recombine and/or mutate away from a

protective immune response or drug pressure. For example, the

development of an effective vaccine has been hampered by the

prevalence of strain-specific immunity, where vaccination with one

antigenic haplotype protects for only one specific variant [4]. To

date, this has been attributed to pre-existing genetic diversity;

however, it may also be that escape mutants emerge in vaccinated

individuals. Plasticity of the Plasmodium genome can also contribute

to the evolution of resistance against anti-malarial drugs. Single

nucleotide variants (SNVs) and copy number variants (CNVs) in

target and resistance genes allow the parasites to evade drug

pressure. Most notably, the emergence of chloroquine-resistant

parasites ultimately caused a huge resurgence in the number of
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malaria cases in the 1990s. Although these two mechanisms are

well described, it is not understood how often variation arises

during mitotic asexual growth or how quickly SNVs accumulate in

the absence of selection pressure.

In addition to diversity at the population level, there is also

variability within the individual parasite. Multigene families,

where only one or few members are expressed, provide antigenetic

diversity and allow the parasite to persist in a host. Recombination

events which occur in meiosis [5,6] as well as mitosis [7] give rise

to new variants in these already diverse families. This genetic

variability in parasites, both in an individual host and on a

population level, allows the parasite to evade the host immune

system even in the absence of transmission (i.e. during dry seasons).

Given this remarkable genetic diversity, it is not surprising that

naturally-infected patients often carry multiple, genetically distinct

parasite clones. The multiplicity of infection (MOI) has tradition-

ally been estimated with a handful of genetic markers, which may

encode proteins under strong selection by the host immune system.

However, these methods are not comprehensive enough to

measure true parasite heterogeneity and many variants are missed

within an individual [8–10]. It is unclear whether parasite

heterogeneity is created through multiple infectious mosquito

bites, heterogeneity in a single mosquito inoculation, or evolution

of new genetic changes (SNVs and structural variants) within the

human host.

Knowing the rate at which genetic changes occur is critical to

understanding the emergence of drug resistance, the evolution of

antigen polymorphisms and multigene families, and the patterns of

malaria transmission. It is not possible to study neutral parasite

mutation rates in humans due to the influence of selection pressure

of the host immune response and genetic host-to-host variability.

Previous quantifications of the mutation rate have focused only on

single genes under drug selection [11]. The basal rate at which

mutations drive Plasmodium evolution has therefore never been

measured at the whole-genome level and much must be inferred.

Using whole-genome sequencing as well as whole-genome tiling

arrays, we have determined the rates at which genetic changes

occur in clonal parasite populations in the absence of immune and

drug pressure in vitro. In addition to the accumulation of SNVs in

the core genome, we observed major deletions in the subtelomeric

regions and identified seven mitotic recombination events. The

rates of these events were not changed by the addition of

atovaquone, a commonly used anti-malarial drug.

Results

Generation of clonal P. falciparum lines in long-term in
vitro culture

To study the natural genomic plasticity of P. falciparum, we

investigated how the parasite genome changes over time. A single

clonal parent was split into six lines. To investigate the effect of

selection pressure on the mutation rate, five parasite lines were

exposed to atovaquone (ATQ), a hydroxy-1,4-naphthoquinone

that targets the mitochondria-encoded cytochrome bc 1 (CYTbc 1)

complex of the electron transport chain of Plasmodium parasites

[12]. ATQ is a component of Malarone, a traveler’s medicine drug

combination currently used to prevent or treat malaria. Resistance

mutations are known to arise quickly [13]. Five lines were exposed

to various concentrations of ATQ (R1, R2 and R3: 2 nM, R4:

20 nM, R5: 50 nM) and one line was cultured without drug

pressure (S1) for up to a year (Figure 1A). For each line, two clones

were selected (three clones for the drug-free line). The four clones

of lines R1 and R2 were retained in culture and cloned again

(R1a/b and R2a/b, generation 1 and 2). Growth inhibition dose-

response assays confirmed that ATQ-resistant clones had indeed

acquired at least a 9-fold increase in EC50 values for ATQ

compared to the 3D7 parent (Figure 1B). Hence, we were able to

evolve drug-resistant parasite clones that are 10-fold more tolerant

to ATQ than their parent. To facilitate the analysis of different

parasites lines on a whole-genome level, all lines were cloned by

limiting dilution before being expanded to isolate DNA for further

analysis and were as genetically homogenous as could be expected

after this process.

Long-term in vitro cultivation of P. falciparum reveals few
small genomic changes at the whole-genome level

Next we identified the number of genetic changes by comparing

the genomes of all seventeen clones to the original 3D7 parental

clone using comparative genomic hybridization analysis. The

whole-genome tiling microarray we used covers 76% of the coding

regions and 41% of the non-coding regions and has a SNV

discovery rate of 91% and a false discovery rate of 11% [14]. The

PfGenominator software [14] was used to analyze the microarray

data and predicted 15 polymorphisms. Capillary sequencing

revealed that two of these polymorphisms were deletions, while

two were false positives and eliminated from further analysis

(Table S1).

As the microarray does not cover the whole genome, the parent

and sixteen clones were further analyzed by whole-genome

sequencing (WGS) using paired-end 60 bp reads with an average

145 bp insert size. On average, 91.8% of the P. falciparum genome

was covered by five or more reads, with clones having between

73.5% and 99.9% of the genome covered by fivefold or greater

coverage (Table 1). To assess the clonality of our haploid parasite

populations, we calculated the number of positions where a

significant amount of nucleotides were different from the most

prevalent nucleotide. On average, only 235 positions were

detected throughout the whole genome and we thus deemed

coverage by five or more high quality reads adequate to call SNVs

accurately. Areas with less than fivefold coverage included highly

repetitive regions such as the telomere repeats and the flanking

telomere associated regions (TARs) as well as certain conserved

regions within gene families such as the var, rifin, and stevor families.

It is therefore possible that some genetic changes in these hard-to-

align and poorly annotated regions were not detected.

Author Summary

Malaria is one of the six diseases that together are
responsible for 90% of all infectious disease deaths
throughout the world. The five species of Plasmodium
that cause human malaria take over 655,000 lives each
year. Parasites evade the immune response through
antigenic variation and develop resistance to anti-malarial
drugs through genetic changes in either the drug target or
genes conferring resistance. We used whole-genome
sequencing and microarray techniques to study evolution
in P. falciparum parasites propagated in vitro for up to 180
generations. We determined the mutation rate and found
that the core genome of a single clone is stable, while the
subtelomeric regions are prone to acquire structural
variants. These changes occur mainly in multigene families
involved in immune evasion. Our findings indicate that the
parasite specifically increases the sequence variability in
multigene families through mitotic recombination. This
high plasticity of the parasite genome suggests that
multiple haplotypes will be present in a natural infection
initiated by a single parasite.

Evolution in P. falciparum
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The WGS data was analyzed with the PlaTypUS 0.12 software

(M. Manary et al., manuscript in preparation), which integrates

many community-developed tools into a pipeline to first align the

reads to the reference genome and then detect SNVs. To decide

on the characteristics of a true SNV, a computer-learning

algorithm was trained on a set of 10,500 known SNVs. The

WGS data confirmed ten of the fifteen polymorphisms detected by

the microarray and identified an additional 25 SNVs across all

clones (Figure 2A and Table S2). To verify that a reasonable cutoff

was set to call SNVs in PlaTypUS, six SNVs that did not make the

cutoff were analyzed by capillary sequencing (Table S1). Four

events located next to a poly A or poly T stretch and sequencing

confirmed that all clones, including the parent, had the same

sequence. The other two events were in fact small deletions but

were discarded by the PlaTypUS software as it is designed to

detect SNVs only. In summary, 38 SNVs were detected by

microarray and WGS (Table S2) and the construction of a

cladogram with all polymorphisms in the genome (38 SNVs,

nineteen deletions, and one duplication) confirmed the known

evolutionary relationship between the clones (Figure 2C).

To estimate how closely related our 3D7 parent is to the

reference 3D7 genome, we compared the WGS data to the 3D7

reference sequence from PlasmoDB v9.1. While on average only

5.4 SNVs distinguished a single clone from the parent, we detected

58 SNVs in the parental 3D7 clone relative to the 3D7 reference

(Figure 2A and Table S3). It is not clear whether these differences

are true SNVs or due to sequencing/assembly errors from the

lower coverage reference genome sequencing efforts [15], platform

differences, or from the different sources of genomic DNA used in

the sequencing projects; however, they highlight the importance of

Figure 1. Generation of atovaquone (ATQ)-resistant parasites. A. Selection schematic. An initial parasite clone (3D7) was split into three lines
after 55 days, and 20 nM or 50 nM ATQ pressure was applied to lines R4 and R5, respectively. The parental line was kept drug-free. After 24 days, the
parental line was split again into four lines, and 2 nM ATQ pressure was applied to three lines (R1, R2, and R3) while line S1 was kept drug free. R2 was
again split after 74 days, and 20 nM ATQ was applied repeatedly to line R2b. After the indicated time in culture, all lines were cloned by limiting
dilution. Four ATQ-resistant clones were kept in culture (Generation 1 (G1): R1a and b G1 and R2a and b G1) and recloned, resulting in a second
generation of clones (Generation 2 (G2): R1a and b G2 and R2a and b G2). The number of days (d) in culture between splits is indicated above each
flask. B. ATQ structure and growth inhibition assay. EC50 values for 3D7 parent, the sensitive clones, and the ATQ-resistant clones are the means 6 SD
of three independent experiments performed in quadruplicate. Statistically significant differences between EC50 values of the parental 3D7 line and
the ATQ-resistant clones were calculated by a one-way ANOVA followed by a Dunnett posttest (*, p,0.0001).
doi:10.1371/journal.pgen.1003293.g001
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having a recent, isogenic reference genome for such comparative

studies.

ATQ pressure directs the selection but does not alter the
mutation rate

We compared the genetic changes acquired in the sensitive

clones to the ATQ-resistant clones. As expected, all ATQ-resistant

clones acquired SNVs in cytochrome b, the target of the drug, while

the sensitive clones did not (Figure 2 and Figure 3). Mutations

were observed at amino acid position 133 (M133V in R1 pairs and

M133I in R2, R3, and R4 pairs), as well as an L144S change in

R4 and an F267V mutation in the clones R5. In addition, we

found a single amplification event on chromosome 1 in the same

R5 sister clones (Figure 3B). Interestingly, this ,220 kb amplified

region encompasses PFA0590w (PF3D7_0112200), which encodes

the P. falciparum multidrug resistance associated protein 1

(PfMRP1), a protein that has been implicated in parasite resistance

to chloroquine and quinine but has not been associated with

naphthoquinone resistance [16,17].

In order to determine if this amplification leads to cross-

resistance, we tested our mutants against a series of diverse anti-

malarial drugs (Figure 3C). Only the strains that contained the

amplification (R5) were cross-resistant to decoquinate, a com-

pound that also targets cytochrome b [18] (,10X, p,0.0001, one

way ANOVA followed by a Dunnett posttest). In contrast, the R4

clones, which showed the strongest EC50 shift for ATQ compared

to the parent, were no more resistant to decoquinate than the

parent or the other ATQ-resistant clones. While the presence of

ATQ selected for SNVs in cytochrome b, it had little influence on the

overall number of genetic changes accumulated in ATQ-resistant

clones (0.02 genetic changes per days in culture) compared to

parasite clones cultured without drug pressure (0.01 genetic

changes per day in culture, p = 0.08, unpaired student t test). Our

data suggest that external influences such as drug pressure do not

appreciably increase the genetic variability of P. falciparum.

Having identified the number of isolated genetic changes

present in each clone, we calculated the mutation rate per base

pair per generation based on the number of mutations detected

Table 1. Sequencing and microarray results summary.

Whole-Genome Sequencing (WGS) Statistics Microarray/WGS Results

Sample ID
Total days in
culture Total bases [Mb]

Fold genomic
coverage

% bases with 5 or
more reads SNVs Structural variants

3D7 parent 55 1194.5 51.3 99.6 n/a n/a

R1a G1 219 684.8 29.4 93.5 7 1

R1a G2 347 1825.1 78.3 97.9 10 4

R1b G1 219 1984.7 85.2 98.3 9 2

R1b G2 347 1699.2 72.9 98.7 15 3

R2a G1 245 1108.6 47.6 99.4 3 3

R2a G2 363 1423 61.1 99.4 4 4

R2b G1 245 n/a n/a n/a 3 5

R2b G2 363 877.5 37.7 78.3 4 5

R3a 323 931.1 40 76.3 6 6

R3b 323 1116 47.9 75.7 7 4

R4a 331 668 28.7 73.5 6 2

R4b 331 1131.1 48.5 76.9 5 3

R5a 330 1267.7 54.4 97.9 4 3

R5b 330 1309.1 56.2 98.6 4 3

S1a 217 25902.3 1111.7 99.9 3 3

S1b 217 23250 997.9 99.9 1 3

S1c 217 1246.4 53.5 97 1 2

Dd2 45 567.5 24.4 71 n/a n/a

609_1 236 104.5 4.5 33.8 7 0

609_2 236 145.0 6.2 53.7 5 0

609_3 236 122.7 5.3 42.8 3 (22)* 0

609ctr 236 n/a n/a n/a 10 1

678_1 195 237.7 10.2 71 3 1

678_2 195 471.7 20.2 85.4 8 (19)* 1

678_3 195 808.1 34.7 90.3 4 0

678ctr 195 n/a n/a n/a 5 0

n/a: not applicable, SNV: single nucleotide variant, Mb: Mega base,
*SNVs in parenthesis were within 15 kb from a chromosome end and could not be confirmed by WGS. ctr: control parasite lines without drug pressure, G1, G2:
generation 1 and 2, R: resistant, S: sensitive.
doi:10.1371/journal.pgen.1003293.t001
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Figure 2. Location and evolutionary relationship of genetic changes following long-term culturing of P. falciparum parasites. Genetic
changes in each individual clone were detected by microarray analysis as well as by WGS. A. Genetic differences were detected by WGS between our
parental 3D7 clone and the available 3D7 reference genome from PlasmoDB v9.1. The 14 chromosomes are indicated in grey, with their relative
length on the y-axis. The mitochondrial (Mit) and apicoplast (Api) genomes are shown in the inset. B. Genetic changes identified by microarray and
WGS in each individual clone compared to the parental 3D7 clone. SNVs are indicated with circles, large-scale deletions (.1000 bp) with diamonds,
and CNVs with arrowheads. For annotations of genes harboring SNVs or that are part of a structural variant, see Table S2. C. Cladogram showing
derived evolutionary relationship in B, computed by a heuristic algorithm to find the tree of minimum complexity starting with the parental clone.
doi:10.1371/journal.pgen.1003293.g002
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within each clone and the total time in culture for each clone

(Figure 1 and Figure 2) [19,20]. To accurately calculate the

mutation rate, we needed to include not only the observed SNVs

but also those SNVs that were lethal/deleterious, which were

unobserved due to loss of mutants from the population. The

selection force against nonsynonymous mutations causes the

appearance of fewer mutants than actually occurred; thus, using

observed mutations alone would cause a downward bias in the

mutation rate estimate. To correct for this selection bias, we

calculated the dN/dS ratio of P. falciparum to be 0.59, which

confirmed the presence of selection (Materials and Methods). This

indicates that 40% (35.5-21)/35.5 of nonsynonymous mutations

are deleterious or lethal. Thus, our observed 21 nonsynonymous

exonic mutations most likely came from a population of

approximately 35.5 true exonic nonsynonymous SNVs. Having

accounted for selection, we used a generalized linear model with a

linear link function and Poisson distributed error to estimate the

mutation rate for each individual clone (Table S2). We calculated

an average mutation rate of 1.761029 (SD: 1.261029) per base

pair per generation for the 3D7 lines in the absence of drug

pressure and 4.661029 (SD: 2.561029, student t test alpha .0.05)

for the ATQ-resistant clones. These per base pair per generation

mutation rates are comparable to other organisms such as yeast

(3.3610210) [21], Drosophila melanogaster (8.4 1029) [22], and

humans (1.1 to 2.561028) [23,24]. If we assume mutation rates of

1.761029 per base pair per generation and a selection disadvan-

Figure 3. Genomic changes and drug sensitivities of atovaquone (ATQ)-selected clones. A. Amino acid change (nucleotide change) and
codon position in cytochrome b of each clone. B. Location of the amplification event detected on chromosome 1 for R5a (423,658–643,292 bp). The
location of the multidrug resistance associated protein 1 (Pfmrp1, PFA0590w) is shown. The log2 ratio of the intensity of each unique probe in R5a
relative to that in S1c is plotted and colored by the moving average over a 500-base pair window. C. The EC50 values for four tested drugs are shown
for the 3D7 parent, the sensitive clones and the ATQ-resistant clones of the first generation (G1). Statistically significant differences between the EC50

values of the parental 3D7 line and the ATQ-resistant clones were calculated by a one-way ANOVA followed by a Dunnett posttest (*, p,0.0001). EC50

values are means 6 SD of three independent experiments performed in quadruplicate.
doi:10.1371/journal.pgen.1003293.g003
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tage against nonsynonymous mutations of 40%, this would result

in 0.04 mutations per surviving daughter parasite on average.

Thus, after 25 generations, every surviving parasite would be

expected to have accumulated one mutation relative to its parent.

Antigenic gene families in subtelomeric regions acquire
structural variants

Deletions or amplifications of large chromosomal stretches have

been observed in long-term in vitro P. falciparum cultures as well as

in field isolates [10,25–29], with amplifications typically being

associated with drug pressure [30–32]. We therefore examined the

data for structural variants using both microarray (manifested as a

substantial loss of hybridization for multiple consecutive probes, or

an increase in signal for a block of probes) and WGS (a lack of

aligned reads or an increase in read pileup, Figure 4). All derived

clones were compared to our parental 3D7 clone. In addition to

the above mentioned single amplification event in two sister clones

exposed to ATQ (R5a and R5b), we detected eighteen indepen-

dent large-scale (.1000 bp) deletions of subtelomeric regions

(within ,60 kb of the telomere) and one chromosome internal

deletion in the seventeen clones analyzed by microarray as well as

WGS (Figure 2, Figure 4, and Figure 5). Comparison of our 3D7

parent to the available 3D7 genome from PlasmoDB v9.1 revealed

a deletion on chromosome 2 in our parental clone.

To quantify the appearance of these structural variation events,

we calculated a structural variation rate in the same manner as the

mutation rates but for the total number of nucleotides deleted or

amplified, without the correction for the dN/dS ratio. A structural

variation rate of 4.761026 per base pair per generation (SD:

1.761026) was determined in the absence of drug and 1.061025

per base pair per generation (SD: 9.061026) in the presence of

drug, with the assumption that deletions are fitness neutral. P.

falciparum subtelomeric regions encode multigene families that are

implicated in antigenic variation. Over 80% of the genes involved

in structural variation events were members of multigene families

with 11 var, 14 rifin, and 4 stevor genes, showing genetic changes

that were so substantial that they could no longer be found by

WGS or microarray (Figure 5). We confirmed that exon 1 from var

gene PFB0010c on chromosome 2 was deleted by Southern blot

analysis (Figure 4). The identification of deletions at the telomeres

confirmed earlier observations from our laboratory where

deletions were also common in field isolates [29].

Deletions are associated with mitotic recombination
events

Structural variants can be the result of a variety of events

including double-strand breaks and mitotic recombination. To

investigate if the observed deletions in multigene families were

associated with mitotic recombination events, we further analyzed

the boundaries of the detected structural variants in the same

paired-end read WGS data set used for variant discovery. Since

read pairs are generated on the same fragment of DNA, they

normally map to the same chromosome. However, at the edge of a

deletion, we found that reads aligning towards the deletion often

had read pairs that aligned to a different chromosome, indicating a

likely recombination event. The read coverage at the position of

the read mate on the other chromosome was often twice the

expected number, suggesting a gene conversion event where DNA

from one chromosome is added onto another, thereby doubling

the donor sequence, while the original sequence in the recipient

chromosome is lost.

To test this hypothesis, we extracted the reads that aligned

within 1000 bp of each predicted deletion as well as the reads

within 1000 bp of their pair mates on a different chromosome. A

read from the deletion site was used as a seed to generate a de novo

assembly of all these extracted reads. Seven contigs could be

assembled that spanned between 1000 and 4000 bp of the

sequence next to the deleted region as well as the sequence from

a different chromosome indicating a recombination event

(Figure 6). Sanger sequencing of three predicted recombination

events confirmed the presence of two new chimeric var genes

consisting of PFF0010w (PF3D7_0600200) and MAL13P1.1

(PF3D7_1300100) as well as PFA0005w (PF3D7_0100100) and

PF10_0001 (PF3D7_1000100). The third recombination was

already present in the parent and involved intergenic regions

close to var genes on chromosome 2 and 12.

A previous study also showed gene conversion events between

var genes from E5 and 3D7, two different clones present in the

NF54 isolate; short, 100 bp stretches of a 3D7 var gene sequence

were found in the context of var gene sequences unique to E5 [33].

In contrast, the gene conversions described here are longer and no

mosaic sequences were observed. As the parasite is haploid during

the asexual blood stage phase of its cycle, the rearrangements of

the genome observed here are results of rearrangements during

Figure 4. Detection of deletions in subtelomeric regions by
WGS and microarray. A. Microarray and WGS detection of deletion
events. The top two panels show the number of WGS paired-end reads
mapping to 16 kb of chromosome 2 for 3D7 and S1a. The third panel
shows the same region but with data from the microarray. The log2
ratio of the intensity of each unique probe for S1a relative to 3D7
parent is indicated and colored by the moving average over a 500-base
pair window. B. Southern blot analysis. The gDNA of the 3D7 parent and
S1a was cut with restriction enzymes HpaI and FspI and analyzed by
pulsed field gel electrophoresis using a probe to the rifin gene
PFB0015c adjacent to the var gene containing the deletion (schematic
on the left, southern blot on the right). Arrows indicate the expected
sizes for the fragments of the full-length 3D7 and the truncated S1a var
gene (PFB0010w). Stars show nonspecific bands.
doi:10.1371/journal.pgen.1003293.g004
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mitotic growth, while the gene conversions described by Frank et

al. could be either due to meiotic or mitotic recombination [33].

Not all of the observed deletions were associated with

translocation of DNA from one chromosome to another. Broken

telomere ends can also be repaired by the addition of telomere

repeats to the broken chromosome arm [34,35]. Therefore, we

wanted to investigate if deletions induce a general increase of the

telomere repeat length (TRL) on all chromosomes (general

increase in the average TRL) or if the telomere repeat size is

only increased on broken telomere arms (presence of two

populations of TRL). We measured the average TRL by the

terminal restriction fragment Southern blot method, where the

peak TRL is determined. Of the tested clones, only S1a

(containing three deletions) had two peaks indicative of a second

population of extended telomere repeats (Figure S1). All other

clones had only one peak that was shorter than in the parent, and

the average TRL varied between clones from different lines. There

was no correlation between the number of deletions and the

average TRL of a clone (Figure S1). In addition, clones R1a and

R1b from the first generation had longer average TRL than their

offspring in generation 2 that had been retained in culture and

subcloned again. This indicates that the average TRL fluctuates

over time. This also explains the differences observed between the

average TRL in this study and an earlier report for 3D7 and Dd2

[34]. These findings show that deletions at the telomeres, in

combination with the fluctuation of the average TRL and mitotic

recombination events in the asexual erythrocytic cycle can

accelerate the evolution of genetic diversity in gene families

exposed to the host immune system.

A stable core genome is common in independently
cultured 3D7 clones as well as in a geographically
different strain

Based on our findings of genetic variation arising in long-term

culture, we predicted substantial changes in the genomes of

different circulating clones of 3D7. Three clones from different

laboratories were compared to our parental 3D7 by microarray.

As expected, all clones contained at least one deletion in the

subtelomeric region and only seven small genomic changes in

core chromosomal regions were detected in total (Figure S2 and

Table S4). Comparing our parental 3D7 to the different 3D7

clones by microarray confirmed a deletion on chromosome 2 in

the parent detected by WGS when compared to the reference

genome.

To determine if these findings were specific to the 3D7 line,

which is susceptible to most drugs, we also analyzed the mutation

rate in a P. falciparum Dd2 clone and its eight offspring clones that

had been selected for resistance to spiroindolones [30]. Dd2 is a

multidrug-resistant clone originally derived from W2, a multidrug

resistant patient isolate from Southeast Asia, and has been

reported to acquire drug resistance at higher rates than other

strains (Accelerated Resistance to Multiple Drugs or ARMD

[36]). Microarray and WGS analysis detected that the core

genome was stable in all Dd2 clones regardless of drug pressure

(29 SNVs in six resistant clones and 15 SNVs in two sensitive

control clones). Calculation of the mutation rates as described

above suggested that Dd2 does not acquire resistance through an

intrinsically higher average mutation rate (3.261029 and

Figure 5. Distribution of deleted genes. Schematic of the location of structural variants detected in individual clones compared to the 3D7
parent. The chromosomal location is indicated on the left, followed by the name of the clone harboring the structural variant (grey box). Dotted
boxes indicate regions with low read coverage and absence of unique probes, which mask the exact size of deletions. Different members of gene
families are color labeled. Deletions in clones marked with an asterisk are associated with recombination events shown in Figure 6.
doi:10.1371/journal.pgen.1003293.g005
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2.461029, in the absence or presence of drug, respectively)

(Figure S3 and Table S5), although we cannot rule out that some

clones in the W2 strain might have this phenotype. We could

detect only one deletion in the eight Dd2 clones that involved a

var gene, but two clones showed large hybridization differences in

subtelomeric regions. The high level of genetic diversity between

3D7 and Dd2 subtelomereric regions makes hybridization

analysis with microarray designed for 3D7, or WGS aligned to

3D7, more difficult to interpret; deletions and SNVs could be

under- or overestimated in Dd2. Even though the two

compounds tested are chemically different and target different

pathways, our observations suggest that the mutation rates are

similar between different P. falciparum strains with different

geographical origins.

Discussion

Using controlled in vitro conditions, we were able to reproduce

genetic changes (SNVs, deletions in subtelomeric regions and

CNVs) usually observed in field isolates and estimate a mutation as

well as a structural variation rate for P. falciparum. The majority of

the 38 SNVs (39%) mapped to intergenic regions or uncharacter-

ized conserved proteins (21%). The appearance of deletions in

subtelomeric regions has mainly been attributed to the absence of

immune pressure and therefore the lack of counter-selection within

in vitro cultures. The majority of the genes located in these regions

are members of multigene families such as the 60 var genes that

encode different versions of the P. falciparum erythrocyte mem-

brane protein 1 (PfEMP1s). Var genes are further sub-grouped into

Figure 6. Mitotic recombination events detected by WGS. Paired-end reads next to deletions as well as their read pair mates that mapped to a
different chromosome were extracted. De novo assembly of these reads, starting with a single seed that mapped next to the deletion, generated new
contigs. Hypothetical scenarios of recombination events that created gene conversions are shown on the left; the sequence alignments of the contigs
(center sequences), where the two sequences from different chromosomes joined, are on the right. The chromosomal position (with orientation) and
the var gene ID are indicated when applicable.
doi:10.1371/journal.pgen.1003293.g006
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three major groups (A, B and C) based on chromosomal location,

orientation and sequence composition of their coding and non-

coding upstream regions [37]. Using our new methodology to

identify genetic recombination events, we were able to character-

ize seven recombination events during mitotic growth. Every

recombination event observed here occurred either between two

group B var genes or two group B var gene upstream regions,

suggesting that recombination events within the same group are

more frequent. PfEMP1, an adhesive molecule that is exported to

the surface of infected human erythrocytes [38], is a key

pathogenicity protein involved in immune evasion. While this

adhesive molecule is obsolete in in vitro cultures, previous studies

showed similar structural variants in the subtelomeric regions of

Peruvian field isolates indicating that these deletions are not an

artifact of in vitro cultures [29].

While we were able to detect structural variants with WGS and

microarray analysis, the mechanisms by which they occur remain

unclear. The recombination events observed here probably

resulted from DNA breaks that were repaired either by direct

joining of the broken DNA ends (resulting in a deletion) or by

homologous recombination with a closely related var gene on a

different chromosome (resulting in a gene conversion). While the

essential proteins needed for homologous recombination are

present in the P. falciparum genome, the key determinants for

non-homologous end joining (NHEJ) are not [15]. Alternative end

joining mechanisms exist in other eukaryotes (reviewed in [39]),

though further studies are needed to identify the full repertoire of

DNA repair pathways present in P. falciparum.

Although we observed deletions in individual clones, it may be

that no loss occurs due to DNA translocation to another

chromosome in a daughter cell on a population level. Because

deletions are much easier to detect than duplications, we might

have underestimated the number of the latter. The generation of

new chimeric variants of var genes could allow the parasite to

further evade the immune system, thereby extending its persis-

tence in the patient. This is especially important for the survival of

the parasite in semi-endemic areas where there are no meiotic

recombination events because no transmission occurs during the

dry season. The generation of new variants in polymorphic genes

such as the merozoite surface protein 1 (msp1) [6] or multigene families

has largely been attributed to meiotic rather than mitotic

recombination. However, our data indicate that ectopic recom-

bination and rearrangement during asexual growth is common

between members of antigenic gene families located at the

telomeres and could extend to other genes bearing repeated

sequence motifs.

An interesting feature of var genes is that only one of the several

dozen copies is transcribed in any given parasite and transcrip-

tional switching between members occurs [40,41]. Because

humans develop antibodies against this surface-exposed protein,

the parasite is believed to use this mutually exclusive expression

mechanism to evade the immune response and persist in its human

host. In vitro switching between members of the var gene family has

been estimated to occur at a rate of 2% of the parasites per

generation in clones derived from IT 4/25/5 [42,43]. Although

this rate is higher than the rate of mitotic change detected here, it

may be that genetic change contributes or at least confounds the

analysis of var gene switching. For example, recombination events

and deletions in the subtelomeric regions might interfere with the

tethering of chromosome termini to the nuclear periphery [5,34]

or the recruitment of proteins initiating the spread of chromatin,

thereby repressing var gene transcription (telomere positioning

effect) [34,44,45]. Differences in average TRL between different

strains of P. falciparum were reported earlier [34,35]. We observed

alterations in the average TRL of individual clones as well as

fluctuation of the average TRL over time, suggesting that the

telomere ends are highly dynamic. Evidence that the telomere

length could have an influence on the expression of nearby genes

was found in Trypanosomes, where the telomere adjacent to the

active expression site of VSGs was truncated [46]. All of these

events could eventually result in a switch of var gene expression. In

addition, the changes could further contribute to an evolutionary

arms race whereby the host immune response and parasite

antigens evolve in parallel to constantly outcompete each other.

The acquisition of new SNVs (most likely due to polymerase

errors) and the recombination of the telomeres during mitosis

provide the parasite with two mechanisms that generate an

enormous amount of genetic diversity. We used a Poisson model to

estimate the mutation rate from the number of SNVs accumulated

over time in continuous culture (1.761029 for 3D7; 4.661029 for

the ATQ-resistant clones). Our use of the dN/dS-corrected

mutation rate from continuous culture provides an estimate that

is unaffected by the population bottlenecks caused by dilutions

(Materials and Methods). Given that a single human has 1013 red

blood cells, by the time parasites are visible by thin smear (1%

parasitemia) more than 85% of the parasites will have acquired at

least one novel genetic change, of which over 53% will be in the

repetitive regions of the genome. In chronic infections (more than

30 days), most parasites will differ from one another assuming

there is no selection for particular variants. This is supported by a

PCR product length analysis of var genes in line E5, a clone of a P.

falciparum patient isolate, NF54 that is also the parental strain of the

3D7 clone. E5 shows at least 13 var gene differences to 3D7 [33].

Although we did not detect any differences in major antigens such

as merozoite surface protein 1 or the circumsporozoite protein, these genes

do bear repeat regions and given that they show high levels of

genetic diversity in populations [47], they may also have higher

rates of mitotic recombination. These high recombination rates

may partially explain why people can be continually re-infected

with closely related strains.

While it is accepted in the field that most malaria infections are

polyclonal, the actual diversity is still vastly underestimated [9,10].

The WHO advises the use of only three markers (merozoite surface

proteins 1 and 2, and glutamine rich protein) to establish the MOI in

clinical trials on antimalarial drug efficacy [48]. All of the

additional genetic changes throughout the parasite genome go

unnoticed. Many of these genetic changes might not have an

immediate selection advantage to the parasite. However, these

unnoticed mutations might become important when a new drug

with a new mode of action is introduced and a selection advantage

is suddenly introduced. Our results provide the baseline informa-

tion needed to design diagnostic studies, whole-genome population

genetic studies or drug treatment studies.

Materials and Methods

Parasites origin and propagation, DNA preparation, and
EC50 determination

3D7 (MRA-151) was obtained from the Malaria Research and

Reference Reagent Resource Center (MR4; American Type

Culture Collection deposited by D. Walliker) and cloned in our

laboratory at The Scripps Research Institute (TSRI), La Jolla [49].

The San Diego 3D7 clone was derived from the same 3D7 stock as

the parental 3D7 propagated at TSRI but was cultured long term

at the Genomics Institute of the Novartis Research Foundation

before cloning. The St Louis 3D7 clone was obtained from Dan

Goldberg and is likely related to MRA-102 (Bei Resources,

Plasmodium falciparum 3D7, deposited by D. J. Carucci and obtained
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from D. Walliker) [49,50] and was used in the genome-sequencing

project [51]. The New York strain from David Fidock, Columbia

University, was obtained directly from David Walliker. Parasites

were propagated in human erythrocytes depleted of white blood

cells by filtration using leukocyte filters (Fenwal Inc., Lake Zurich)

with medium containing 5% human serum and 1.2% GIBCO

AlbuMAX II (Invitrogen, Grand Island) [52]. Parasites were split

1:20 when they reached parasitemias .8%. To obtain single

clones, each line was cloned by limiting dilution (0.25, 0.5, 1, 10

and 30 parasites per well) in 96-well plates and two clones from

each line (three clones from the sensitive line) were chosen for

further analysis. Clones R1a and b and R2a and b were kept in

culture for another 118 (R2a and b) or 128 (R1a and b) days and

subcloned again. The original clones were termed generation 1

(R1aG1, R1bG1, R2aG1, and R2bG1) and the offspring were

termed generation 2 (R1aG2, R1bG2, R2aG2, and R2bG2).

Genomic DNA was purified using a standard phenol-chloroform

extraction method [53]. EC50 assays were performed using a 384-

well format as previously described [54]. Each experiment was

repeated three times. The averages of the EC50 were calculated for

each experiment and log transformed. A one-way ANOVA

followed by a Dunnet post-test with the 3D7 parent as reference

was performed in Graphpad Prism.

Microarray analysis and whole-genome sequencing
Microarray analysis was completed following the protocol in

Dharia et al. [14]. In brief, fifteen micrograms of genomic DNA

and 2.5 ng each of Bio B, Bio C, Bio D, and Cre Affymetrix

control plasmids (Affymetrix Inc., Santa Clara) were fragmented

with DNaseI and end-labeled with biotin. The samples were

hybridized to the microarrays overnight at 45uC in Affymetrix

buffers, washed, and then scanned using a modified protocol with

wash temperatures of 23uC to account for the high AT content of

P. falciparum. Briefly, for polymorphism detection we scanned for

sets of three overlapping probes that had significantly lower

hybridization in the sample when compared to the parental 3D7.

Polymorphisms termed SFPs (single feature polymorphism) were

detected by z-tests using an empirically derived standard deviation

of the normal distribution and a p-value cutoff of 161028.

Genomic DNA libraries were prepared for WGS using the

standard Illumina protocol of fragmentation, end-polish, and

adapter ligation (v. 2011, Illumina, Inc., San Diego). The final

PCR enrichment step was conducted with the KAPA HiFi

polymerase (KapaBiosystems, Inc., Boston). This enzyme has been

shown to more accurately amplify DNA regions with extremely

high AT content [55]. DNA libraries were clustered and run on an

Illumina Genome Analyzer II, according to manufacturer’s

instructions. Base calls were made using CASAVA v1.8+
(Illumina, Inc., San Diego).

Microarray analysis
We have found that different amounts of RNA remaining after

the DNA extraction process can give rise to hybridization

differences in probes to noncoding RNA (ncRNA) genes. These

changes are characterized by hybridization loss or gain over a wide

range of probes throughout the gene. Altogether, 12.6% of the

1779 SFPs detected between the parental 3D7 and all clones

mapped to ncRNA genes such as tRNAs (15), rRNAs (68),

snRNAs (4) the signal recognition particle RNA (3), and

MAL8P1.310, which showed similar hybridization patterns and

was suspected of encoding an ncRNA. These SFPs were excluded

from further analysis.

After excluding these ncRNA genes, we identified a total of 46

SFPs suggestive of SNVs that mapped to 23 different locations in

the genome. Blemishes on the microarray surface or nonfunctional

probes can give rise to false positives, especially for SNVs with only

one or two probes. We assumed that a true SNV would not only

be detected between hybridizations of the parent and the clone but

also when compared to the other clones. Therefore all clones were

also compared to one another to confirm or contradict the initial

SFPs detected between the parent and the clone. In the end fifteen

SNVs were considered real, of which WGS confirmed ten and

capillary sequencing detected two false positives that were

excluded from further analysis.

Whole-genome sequencing analysis
An internally developed WGS pipeline, dubbed PlaTypUS (M.

Manary et al., in preparation), was used to align and analyze all

WGS data. The program, compiled as a standalone executable,

integrates many community-developed tools into its processing

pipeline. In order to generate alignments, PlaTypUS follows a

multi-step alignment process to generate and execute quality-

control measures on an alignment map. FASTQ files obtained from

sequencing were aligned to the Pf3D7 reference (PlasmoDB v9.1)

using BWA v0.6.1 with soft clipping of bases with quality score 2

and below [56]. Those reads that did not map to the reference

genome were excluded from further analysis using SAMTOOLS

v0.1.18 [57]. PCR duplicates were next identified and removed

using Picard v1.48 MarkDuplicates (http://picard.sourceforge.net).

Aligned reads were then realigned around indels and areas of high

entropy using GATK v1.4+ IndelRealigner. The base quality scores

of realigned reads were then recalibrated using GATK Table-

Recalibration [58]. After realignment and recalibration, the samples

were considered ready for use in downstream analysis.

For SNV detection, the PlaTypUS uses a computer-learning

algorithm to decide on the characteristics of a true SNV. WGS

data for 10,500 known SNVs were obtained from PlasmoDB, and

each of these positions was analyzed with regard to 26 metrics. In

this way, the profile of a true SNV was discovered. The following

criteria were found to be indicative of a true SNV, and were used

to filter the set of raw SNVs from our samples. Genetic variants

were identified with the GATK UnifiedGenotyper with a

minimum base quality score threshold of 20 and subsequently

filtered using GATK VariantFiltration with custom filters designed

for Plasmodium spp [58,59]. SNVs were excluded if they failed one

or more of the following filters: strand bias (p,0.00001, Fisher’s

exact test), minimum depth of coverage (,5 reads), variant quality

(,100 phred scaled), likelihood estimate of genotype being correct

(,5 phred scaled), mapping quality bias (p,0.10 using Mann-

Whitney Rank Sum test), base quality bias (p,0.10 using Mann-

Whitney Rank Sum test), variant quality as a function of depth

(,5 per polymorphism), and percentage of non-uniquely mapped

reads covering the variant (.10% of total depth with a minimum

of 4). Variant annotations to which filters are applied are

thoroughly explained on the GATK website (http://www.

broadinstitute.org/gsa/). 19,532 raw variant calls across all

seventeen clones were filtered down to 38 high quality SNVs.

Gene annotations for high quality SNVs were generated using

snpEff v.2.0+ (www.snpeff.sourceforge.net).

The PlaTypUS also integrates a novel CNV-calling algorithm,

which combines Weierstrass convolution of depth of coverage data

with Canny edge detection to identify the break points of copy

number events. 18 possible large deletions in the subtelomeric

regions were identified for follow-up.

Determination of mutation rates
We assumed that a number of lethal or deleterious mutations

might arise during long-term culture that would not be detected,
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as the corresponding parasites would be lost; therefore, we tested

for evidence of selection by calculating the dN/dS ratio and

corrected our observed SNV ratio for this assumed loss. To do this

we first calculated the codon potential ratio (the likelihood that a

single nucleotide replacement results in a nonsynonymous

mutation) from the list of all sequences from the 3D7 reference

genome. We utilized the Phylogenetic Analysis by Maximum

Likelihood (PAML) software suite [60] (yn00, default settings) to

generate a nonsynonymous to synonymous codon potential ratio

of 4.63. An uncorrected dN/dS ratio was generated by computing

the total number of nonsynonymous SNVs over the length of all

possible sites containing those SNVs (the exonic genome) and

dividing by the total number of non-nonsynonymous SNVs over

their entire domain (the length of the genome). This gave an

uncorrected dN/dS ratio of 2.73, which corresponds to a true dN/

dS ratio of 0.59, indicating a deficit of nonsynonymous SNVs. In

the absence of other information, the assumption was made that

the actual ratio should approach 1 in the absence of deleterious

mutations, and that only nonsynonymous mutations are deleteri-

ous.

We used a generalized linear model with a linear link function

and Poisson distributed errors to model the mutation rates for the

various lines with and without drug. We assumed that the data

followed the model

f M1:::Mm X1:::Xm; hjð Þ~ P
m

i~1

h’Xið ÞMi e{h’Xi

Mi !

where Mi is the number of mutations scaled by the dN/dS factor;

Xi = [gi li di]9 where gi, is the number of generations in culture, li, is

a categorical variable indicating the parasite line, di, is a

categorical variable indicating the presence of drug treatment; m

is the number of parasite lines; and h is the vector of coefficients to

be determined by the model. We used this generalized linear

regression to calculate the mutation rate per clone, using the

number of SNVs and time to acquire them for each clone

separately. We assumed that the mutation rate regression does not

include a constant because there are no mutations at baseline. The

expected number of mutations per experiment is thus

E Mi gi,li,dij½ �~h’Xi~h1gizh2gilizh3gidizh4gilidi

We applied a Poisson-distributed number of mutations with the

assumption that each parasite line accumulated mutations with a

constant probability per generation. The probability of a mutant

occurring in each generation is approximately binomially distrib-

uted B(n,p) with n the number of nucleotides and p the mutation

rate. After g generations the distribution of the number of

mutations per daughter parasite is B(n,pg), assuming replication is

independent and identically distributed. These replications are

identically distributed because we assume that the accumulation of

mutations neither quickens nor slows the mutation rate. By the

Poisson theorem, we can approximate B(n,pg) as a Poisson

distribution and thus use the regression model as above.

The reason that we can assume a constant mutation rate (i.e. a

constant probability of SNVs occurring) is that we have corrected

for the selection bias against deleterious mutations using the dN/

dS ratio. The dN/dS-corrected number of mutations is an

unbiased estimator of the number of mutations that would have

occurred in the absence of selection. The number of dilutions of

parasite cultures during culture maintenance will not affect this

quantity, because we assume that mutations are accumulating in

both the remaining and disposed culture at the same constant rate.

The number of dilutions would affect the mutation rate if we were

calculating the rate using the fraction of mutants observed after

culturing, because population bottlenecks may increase the

variance of the fraction of mutants. Calculating the mutation rate

from the proportion of mutants versus wild type organisms after

parallel culturing is known as the ‘mutation rate problem’ [20] and

the experiments used to calculate these rates are called fluctuation

tests. However, we avoid these issues by calculating rates from

continuous cultures after correcting for selection pressure [61,62].

To run these regressions we used the glm command (MATLAB

R2012b, The Mathworks) and then divided by the number of base

pairs in the P. falciparum genome (2.356107) to determine the

mutation rates with and without drug.

Pulsed-field gel electrophoresis and Southern blot
To confirm the partial deletion of PFB0010w on chromosome 2

in clones R2a and b; G1 and 2, R3a and b and S1a and c, 86108

parasites of the 3D7 parent and the S1a clones were prepared,

digested and run on a gel according to previous methods [63,64].

The chromosome 2 probe was PCR amplified from 3D7 gDNA

(chr2_PFB0015cF2: 59-TACCAACATCGAAAAATACCAAAC-

G-39 and chr2_PFB0015cR: 59-TGGCGGAGAGATTTGAT-

GATATTG-39) and labeled with [32P]-adCTP (3000Ci/mmol).

The membrane was incubated with the probe overnight at 42uC in

ECL gold hybridization buffer (GE Healthcare) and washed

according to the manufacturer’s instructions.

To determine the average TRL, mixed-stage parasites cultures

of the parental 3D7, all first generation (G1) clones, second

generation (G2) clones R1a and R1b, as well as a clonal Dd2 strain

were lysed with saponin and the pellets were resuspended in

agarose to generate plugs. Agarose plugs containing 86107

parasites were digested with AluI, DdeI, MboII, RsaI. The digested

gDNA was run on an agarose gel and transferred to a membrane.

The probe for the telomeres (59-GGGTTTAGGGTTTAGG-

GTTTA-39) was labeled with [32P]-cATP and hybridized in

Church wash (40 mM NaPi pH 7.2, 1 mM EDTA pH 8, 1%

SDS) overnight at 55uC and washed. The membranes were placed

against a phosphor storage screen for 2 days and then scanned in a

phosphor imager.

The average TRL was estimated by quantifying the signal

intensities for each lane using QuantityOne 1-D analysis software

(BioRad, Hercules). The area under the curve was then calculated

using Prism (GraphPad Software, Inc., La Jolla) and the peak was

reported.

Sanger sequencing
To confirm mutations predicted by microarray and WGS or to

confirm accurate rejection of some mutations that did not make

the cut off with the PlaTyPus software, 16 predicted SNVs were

PCR-amplified with Phusion polymerase (Finnzymes Inc., Wo-

burn) using genomic DNA in a 100 mL PCR reaction volume for

35–40 reaction cycles. Genomic DNA from the 3D7 parent,

R1aG2, R2aG2, R3b, R4b and R5b was used as templates. In

addition, three predicted gene conversion events were also

analyzed by Sanger sequencing. All PCR products were sequenced

directly (Retrogen, Inc., San Diego). The primer sequences and

results are summarized in Table S1.

Cladogram analysis
A hierarchical lineage cladogram was constructed from the

profile of detected mutations (38 SNVs, 18 deletions, and one

duplication) for each clone. Due to the small total number of

mutations and the essentially linear process in which they were
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acquired, an un-weighted pair group method with arithmetic

mean was used to generate distances between nodes in the

software program Mesquite [65], and a tree diagram was

constructed from these calculated distances. Mesquite uses a

heuristic algorithm to generate the tree of minimum complexity

from the mutation data given as categorical changes (booleans),

and then minimizes the number of total number of changes in

each tree. Each tree was then re-rooted at the parental strain.

Reconstruction of recombination events
For each suspected recombination event, a de novo assembly of a

contig spanning the deletion/recombination event was attempted,

using the reads spanning 10,000 bp around the expected site of

recombination from both the donor and recipient chromosomes.

The PRICE Genome Assembly program (http://derisilab.ucsf.

edu/software/price/index.html) was seeded with a single read

from the region next to the predicted deletion, whose mate pair

aligned to another chromosome, and then run for twenty cycles

with otherwise default settings. The largest contig (range 1399 bp

to 5405 bp) from each assembly was searched against the entire

Plasmodium genome using BLAST and was then aligned using

ClustalW2 [66] to the two chromosomal regions with the highest

identity score and trimmed.

Supporting Information

Figure S1 Telomere remodeling adds to the natural genetic

plasticity of P. falciparum. A. Mixed-stage parasite cultures of the

parental 3D7, all first generation (G1) clones, second generation

(G2) clones R1a and R1b, as well as a clonal Dd2 strain were lysed

with saponin and the pellets were resuspended in agarose to

generate plugs. Agarose plugs containing 86107 parasites were

digested with restriction enzymes that cut frequently throughout

the Plasmodium genome except at the telomeres. The digested

gDNA was run on an agarose gel and transferred to a membrane.

The telomere repeat length (TRLs) were identified using P.

falciparum-specific radioactively labeled telomere probes. B. The

signal intensity for each lane was quantified using QuantityOne.

The optical densities (OD) for each position (y-axis in kb) in a lane

are plotted on the x-axis. The corresponding average TRLs were

calculated for each clone and are indicated in parentheses after the

clone’s name. The number (#) of deletions of each clone is also

indicated in parentheses. C. Relationship between the number of

deletions and the average TRL of a clone. The linear regression is

indicated. na, not applicable.

(TIF)

Figure S2 Subtelomeric chromosomal differences in indepen-

dently cultured P. falciparum 3D7 clones. The hybridization

patterns of clonal 3D7 genomes from different laboratories

(Washington University, St Louis [67]; Columbia University,

New York [68] and Genomics Institute of the Novartis Research

Foundation, San Diego [18]) were compared to our 3D7 (La Jolla)

clone’s genome pattern. The y axis shows the log2 ratio of

hybridization probe intensities for each strain relative to the 3D7

clone used in these experiments, calculated using probes that are

unique in the genome and are colored by the moving average over

a 500-base pair window as indicated in the color bar. The left

panel shows the hybridization pattern for strains without major

genetic changes and the right panel, the pattern at the same

chromosomal location for a clone from a different laboratory

containing a deletion.

(TIF)

Figure S3 Low mutation and deletion rate in Dd2 parasites. A.

Schematic of drug selection for Dd2 clones. Starting with a single

Dd2 parent, resistant parasite lines were established for two

different spiroindolones (NITD609 and NITD678) in triplicate

while two lines were cultured in parallel without drug pressure

(ctr). B. Clones 678_1 and 678_2 acquired duplications around

PFL0590c (labeled by a star), which encodes PfATP4, the putative

target of spiroindolones. Indicated are the log2 ratios of the

intensity of each unique probe of the different Dd2 clones relative

to those of the Dd2 parent. The probe log ratios were colored by

the moving average over a 500-base pair window. C. Chromo-

somal locations of mutations detected by microarray and WGS

(circles) and small deletions (stars).

(TIF)

Table S1 Primers sequences designed for SNV confirmation, cut

off verification of PlaTypUS and, gene conversion confirmation.

Single nucleotide variants and cutoffs were predicted with

PlasmoDB v8.2 and positions and chromosomes are according

to PlasmoDB v8.2.

(XLSX)

Table S2 Summary of all deletions and small genetic changes in

3D7 parasites (cultured in the presence or absence of atovaquone)

detected by microarray and WGS by an Illumina Genome

Analyzer II. PlasmoDB v9.1.

(XLSX)

Table S3 List of all small nucleotide variants detected by the

PlaTypUS software between our parental 3D7 clone and the

sequence available from PlasmoDB v9.1.

(XLSX)

Table S4 Comparison of 3D7 strains from different laboratories.

Gene locations according to PlasmoDB v8.2.

(XLSX)

Table S5 Summary of small genetic changes in Dd2 clones

(evolved for spiroindolone resistance) detected by microarray and

WGS by an Illumina Genome Analyzer II. Gene locations

according to PasmoDB v8.2

(XLSX)
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