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SUMMARY

When telomeres become critically short, DNA
damage response factors are recruited at chromo-
some ends, initiating a cellular response to DNA
damage. We performed proteomic isolation of
chromatin fragments (PICh) in order to define
changes in chromatin composition that occur
upon onset of acute telomere dysfunction triggered
by depletion of the telomere-associated factor
TRF2. This unbiased purification of telomere-
associated proteins in functional or dysfunctional
conditions revealed the dynamic changes in chro-
matin composition that take place at telomeres
upon DNA damage induction. On the basis of our
results, we describe a critical role for the polycomb
group protein Ring1b in nonhomologous end-
joining (NHEJ)-mediated end-to-end chromosome
fusions. We show that cells with reduced levels of
Ring1b have a reduced ability to repair uncapped
telomeric chromatin. Our data represent an unbi-
ased isolation of chromatin undergoing DNA dam-
age and are a valuable resource to map the changes
in chromatin composition in response to DNA dam-
age activation.
INTRODUCTION

Most human cancer cells have short telomeres when compared

to normal surrounding tissues (Hastie et al., 1990; Meeker et al.,

2004). This is due to the relatively late reactivation of telome-

rase during tumorigenesis, resulting in the proliferation of cells

for an extended period of time in the absence of a telomere

elongation mechanism (Maser and DePinho, 2002; Shay and

Wright, 2001). Loss of end protection is frequently detected in

human cancers such as colorectal carcinomas (Rudolph

et al., 2001), oral squamous cell carcinomas (Gordon et al.,

2003), and chronic lymphocytic leukemia (Augereau et al.,
1320 Cell Reports 7, 1320–1332, May 22, 2014 ª2014 The Authors
2011; Chin et al., 2004; Lin et al., 2010; Suram et al., 2012).

Mounting evidence suggests that telomere dysfunction plays

a crucial role in promoting tumor development (Ramsay et al.,

2013). For example, the induction of telomere dysfunction in

mice results in epithelial cancers with a complex karyotype,

indicative of rampant genomic instability (Artandi et al., 2000;

Chin et al., 1999). The most striking illustration of the role of

end protection in human health comes from patients affected

by the rare inherited disorder dyskeratosis congenita (DC).

This disease is caused by mutations affecting either telomere

elongation factors (dyskerin and hTERT) or telomere-associ-

ated proteins (Dokal, 2000; Kirwan and Dokal, 2009; Mitchell

et al., 1999; Sarper et al., 2010; Shay and Wright, 1999; Touzot

et al., 2010; Vulliamy et al., 2004; Walne et al., 2008). Among

other symptoms, DC patients have critically short telomeres,

show signs of telomere dysfunction, and display an increased

incidence of cancer.

When telomeres become critically short, they fail to recruit

sufficient levels of protective shelterin complex, resulting in

failure to protect chromosome ends and leading to the

activation of a DNA damage response (DDR) pathway

(d’Adda di Fagagna et al., 2003; Takai et al., 2003). Indeed,

to date, the following DNA damage proteins have been

shown to play a role in the response to dysfunctional telo-

meres: MRE11, ATM, gH2AX, MDC1, RNF8, RNF168, 53BP1,

RIF1, and PTIP1 (Attwooll et al., 2009; Chapman et al., 2013;

Denchi and de Lange, 2007; Di Virgilio et al., 2013; Dimitrova

et al., 2008; Dimitrova and de Lange, 2006, 2009; Peuscher

and Jacobs, 2011; Zimmermann et al., 2013). However, a

global approach to systematically determine which factors

relocalize to or from dysfunctional telomeres is currently

lacking.

Here, we applied a proteomic approach to comprehensively

characterize the proteins whose localization changes upon telo-

mere dysfunction. Using this approach, we identified a series of

previously characterized DDR factors as telomere-dysfunction-

recruited factors in addition to a set of factors that are recruited

to dysfunctional telomeres. In addition, our data revealed a crit-

ical role for the polycomb protein Ring1b for the efficient nonho-

mologous end-joining (NHEJ)-mediated fusion of dysfunctional

telomeres.
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Figure 1. Proteomics of Isolated Chromatin

Segments of Functional and Dysfunctional

Mouse Telomeres

(A) Schematic representation of the PICh analysis

employed to define the chromatin changes that

occur at telomeres upon TRF2 depletion.

(B) Identified proteins were plotted based on the

log2 intensity (y axis) calculated based on the total

spectra counts identified and ratio between TRF2-

proficient and TRF2-deficient settings (x axis)

calculated as log2 (OHT spectra/control spectra).

Only proteins identified in at least two experiments

are plotted. Green and orange dots represent

proteins recruited at telomeres in a TRF2-depen-

dent or TRF2-independent manner, respectively.

Yellow dots represent known DNA damage factors

recruited to dysfunctional telomeres.

(C) Venn diagrams depicting the total number of

proteins identified in at least two out of three PICh

experiments from the control and OHT samples

and the degree of overlap between the data sets

from the two samples.

(D) Table listing shelterin components and some of

the DNA damage response (DDR) factors identified

with the corresponding spectra counts isolated in

each individual experiment. nd, not detected.

(E) Pie chart illustrating the distribution of proteins

identified in the TRF2-depleted samples (OHT),

classified according to Gene Ontology (GO). Note

the enrichment for DNAdamage response proteins.
RESULTS

Changes in Chromatin Composition following Telomere
Dysfunction
We hypothesized that upon acute telomere dysfunction, relocal-

ization of DDR factors at telomeric repeats [TTAGGG]n would

lead to a drastic change in chromatin composition at chromo-

some ends and that this could be isolated and identified using

an unbiased proteomic approach. To verify this hypothesis, we

adapted a technique termed PICh (proteomics of isolated chro-

matin segments) that allows the isolation of chromatin regions

using a biotinylated oligonucleotide complementary to a DNA

sequence of interest (Déjardin and Kingston, 2009). PICh was

originally designed to isolate telomeric chromatin derived from

human cells and employed locked nucleic acid (LNA)-modified

oligos. We optimized several steps in the PICh protocol in order

to efficiently isolate telomeric chromatin from murine cells

including the use of peptide nucleic acid (PNA)-modified oligo-

nucleotides as capture probes. In our experiments, the use of

PNA probes resulted in more efficient isolation of telomeric chro-

matin when compared to LNA-modified oligonucleotides (data

not shown). To achieve synchronous and homogenous telomere

dysfunction, we used TRF2 conditional knockout mouse embry-

onic fibroblasts (MEFs) (Celli and de Lange, 2005) harboring

an inducible CRE recombinase (Rosa26-CRE-ER) (previously

described in Okamoto et al., 2013). 4-Hydroxytamoxifen (OHT)

treatment of these cells allows for efficient and synchronous

deletion of TRF2, resulting in DNA damage activation at every

chromosome end (Okamoto et al., 2013). Telomeric chromatin
C

was isolated using a PNA capture probe complementary to the

telomeric repeat sequence [TTAGGG]3 conjugated with a des-

thiobiotin moiety (see Figure 1A for schematics). Telomeric

chromatin was isolated in three independent experiments from

TRF2-depleted (OHT) and control cells. The resulting chro-

matin-associated proteins were identified using liquid chroma-

tography tandem mass spectrometry, and only proteins

identified in at least two independent experiments were further

analyzed. In total, we identified 787 unique proteins in samples

derived from TRF2-proficient cells and 559 in samples derived

from TRF2-deficient cells (Figure 1; Table S1). Importantly,

despite the different cellular systems used, there is 60% of over-

lap between the proteins that we identified in TRF2-proficient

MEFs and the ones isolated in HeLa cells (Déjardin and Kingston,

2009). In support of our initial hypothesis, we found significant

differences in the composition of telomeric chromatin in the

presence or absence of TRF2, with 316 proteins found only at

TRF2-proficient telomeres, 88 proteins found only at TRF2-defi-

cient telomeres, and 471 proteins found in both conditions

(Figure 1C). Among the proteins that were only found at TRF2-

proficient telomeres, we found TRF2 and its binding partners

RAP1 and Apollo (Lenain et al., 2006; van Overbeek and de

Lange, 2006; Li et al., 2000) (Figures 1B–1D; Table S2). In

contrast, from TRF2-deficient telomeres, we isolated several

DNA damage factors that have been previously shown to localize

to dysfunctional telomeres such as ATM, the MRE11 complex,

MDC1, and 53BP1 (Celli and de Lange, 2005; Dimitrova and de

Lange, 2006) (Figures 1B–1D; Table S3). Finally, proteins that

are known to bind to telomeres in a TRF2-independent manner
ell Reports 7, 1320–1332, May 22, 2014 ª2014 The Authors 1321
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Figure 2. Validation of Factors that Localize at Dysfunctional Telomeres

(A) List of proteins identified by PICh as enriched at dysfunctional telomeres. Average number of spectra identified at TRF2-deficient (OHT) or TRF2-proficient (NT)

telomeres is indicated. Proteins were ranked based on their relative enrichment at TRF2-depleted telomeres and normalized to absolute expression of the protein

(legend continued on next page)
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were not significantly enriched in either sample, such as the shel-

terin components (TRF1, TIN2, TPP1, POT1a, and POT1b) and

other known telomere-associated proteins, such as members

of the STN1 and THO complexes and the chromatin-remodeling

factors ATRX and DAXX (Figures 1B–1D; Table S1) (Buscemi

et al., 2004; de Lange, 2005; Lewis et al., 2010; Pfeiffer et al.,

2013; Wong et al., 2010). Annotation of the proteins found only

in the TRF2-depleted setting revealed a significant enrichment

for DDR genes (Figure 1E). Collectively, our data show that using

a PICh-based approach, we were able to detect the changes

that occur in chromatin upon removal of the telomeric factor

TRF2 and the consequent induction of a DNA damage response

at uncapped chromosome ends.

Isolation of Proteins that Are Displaced from
Dysfunctional Telomeres
To define the critical changes that occur in telomeric chromatin

upon removal of TRF2, we first focused on the proteins that

were lost upon OHT treatment. To this end, proteins with signif-

icant telomeric enrichment in TRF2-proficient cells relative to

OHT-treated controls were ranked based on their absolute

expression in mouse cells using the online database PaxDB

(Wang et al., 2012). In addition, the resulting lists were run

against the Contaminant Repository for Affinity Purification

(http://www.crapome.org) (Mellacheruvu et al., 2013), and com-

mon contaminants were excluded from further analysis. Signifi-

cantly, the list of proteins that are lost upon TRF2 depletion

contained at top-ranking positions RAP1 and Apollo, two pro-

teins that have been shown to be recruited at telomeres in a

TRF2-dependent manner (Celli and de Lange, 2005; Lenain

et al., 2006; Li et al., 2000; van Overbeek and de Lange, 2006),

as well as TRF2 (Table S2). To validate additional factors that

are lost from telomeres upon TRF2 depletion, we chose two

proteins among the top 5% of the factors enriched at TRF2-pro-

ficient telomeres: LRWD1 and CDCA8. Localization of these pro-

teins at telomeres was tested in the presence or absence of

TRF2 using tagged alleles expressed from retroviral vectors in

TRF2F/F Rosa26 CRE-ER MEFs. As a positive control, we used

a myc-tagged RAP1 allele. Our results indicate that CDCA8

and LRWD1 showed frequent colocalization with telomeric

DNA (Figures S1A and S1B). In agreement with our PICh results,

we found that upon TRF2 depletion, the localization of CDCA8

with telomereswas reduced by approximately 50% (Figure S1B).

On the contrary, LRWD1 localization to telomeres was not

significantly affected by the loss of TRF2, suggesting that its

recruitment to telomeres is independent of TRF2 (Figure S1B).

Therefore, these data suggest that our analysis can detect

both known and unidentified telomere-associated factors that

are affected by TRF2 depletion. Interestingly, LRWD1 was also

recently identified at telomeres in a quantitative proteomic
in mouse cells (PaxDB database). Proteins highlighted in yellow represent DNA da

highlighted in blue represent proteins selected for validation.

(B) Localization of ectopically expressed tagged proteins (myc/GFP) (stained in r

MEFs infected with the indicated constructs were treated with OHT and harvest

(C) Quantification of data shown in (B). Cells with five or more foci colocalizing w

three independent experiments.

See also Figure S2.

C

approach performed by the Lingner laboratory (Grolimund

et al., 2013). To address whether CDCA8 and/or LRWD1 play a

critical role in telomere protection, we performed small hairpin

RNA (shRNA) depletion of these proteins. Efficient downregula-

tion of either CDCA8 or LRWD1 did not result in accumulation

of the DNA damage factors gH2AX and 53BP1 at telomeres (Fig-

ures S1C–S1E). In contrast, shRNA-mediated downregulation of

TRF2 resulted in frequent localization of gH2AX and 53BP1 foci

at chromosome ends (Figures S1C–S1E). CDCA8 is part of the

chromosome passenger complex (CPC), which is involved in

proper mitotic segregation and cytokinesis (reviewed in Car-

mena et al., 2012). LRWD1 mediates association of the origin

recognition complex (ORC) to chromatin and was shown to be

required for the maintenance of pericentric heterochromatin

silencing (Chan and Zhang, 2012; Shen et al., 2010). Although

depletion of these proteins did not result in activation of a DNA

damage response at TRF2-depleted telomeres, we could not

exclude that CDCA8 and/or LRWD1 have a role at telomeres

that was not detected by our analyses, and further functional

characterization is currently undergoing and will be reported in

a future study.

Isolation of Proteins that Are Recruited to Dysfunctional
Telomeres
Next, we focused on factors that are recruited to telomeres

following TRF2 loss. Proteins were ranked based on their relative

enrichment at dysfunctional telomeres and normalized to their

absolute expression inmouse cells (Wang et al., 2012). This anal-

ysis revealed 114 proteins that are enriched at TRF2-depleted

telomeres. Among these proteins, we found 24 known DDR

proteins, of which ten were previously reported to be associated

with dysfunctional telomeres (Figure 2A; Table S3). To validate

whether our approach identified factors that relocalize to

dysfunctional telomeres, we selected 15 proteins ranked at

different positions within this list and tested their localization in

the presence or absence of TRF2 (Figure 2). The selected factors

represented both proteins that were previously shown to interact

withDNAdamage sites aswell as proteinswith no reported link to

the DDR pathway. TRF2F/F Rosa26 CRE-ER MEFs expressing a

tagged version of the selected proteins were treated with tamox-

ifen (OHT) or left untreated (control), and the localization of the

ectopically expressed proteins to telomeric DNA was assessed

by indirect immunofluorescence (IF). As a positive control, we

used a 53BP1 allele that has been previously shown to localize

to dysfunctional telomeres (Dimitrova et al., 2008). As expected,

ectopically expressed 53BP1 colocalized with telomeres in the

vast majority of TRF2-deficient cells (Figures 2B and 2C). Simi-

larly, eight of the selected proteins (Rad18, Rap80, Senp7,

Ring1b, Pml, Fam50a, Fancd2, and Ppp2r5d) localized at telo-

meres upon TRF2 depletion, while the remaining seven showed
mage response factors known to localize at dysfunctional telomeres. Proteins

ed) to telomere repeats (TTAGGG, stained in green). TRF2F/F Rosa26 CRE-ER

ed 3 days later. Scale bar represents 5 mm.

ith telomeres were counted as positive. Error bars represent SD of average of
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Figure 3. Ring1b Plays a Critical Role in the Response to Dysfunctional Telomeres

(A) Metaphase spreads were harvested from TRF2F/F Rosa26 CRE-ERMEFs infected with a control lentiviral construct (shLuciferase) or with the indicated shRNA

constructs and treated with OHT for 96 hr. Chromosomes were stained with a PNA probe complementary to telomeric repeats (green) and DAPI (red).

Percentages of fused chromosome ends are indicated. Scale bar represents 5 mm.

(B) Quantification of data shown in (A).

(C) TRF2F/F Rosa26 CRE-ERMEFs infected with the indicated shRNA constructs were treated with OHT for 72 hr and fixed and stained for gH2AX (green), 53BP1

(red), and DAPI (blue). Scale bar represents 5 mm.

(D) Quantification of the data shown in (C) (cells with five or more gH2AX/53BP1 foci were counted as positive). Error bars represent SD of average of three

independent experiments.

(E) Quantification of relativemRNA levels of the indicated genes in cells infectedwith the indicated shRNA constructs, normalized to shLuciferase as control. Error

bars represent SD of the average of three independent experiments.

See also Figure S3.
either no detectable colocalization or a diffuse nuclear staining

(Figures 2B and 2C). Nucleoplasmic extraction experiments re-

vealed tight association of Rad18, Rap80, Pml, Senp7, Ring1b,

and Fancd2 with dysfunctional telomeres (Figure S2).

A Role for Ring1b in the Onset of End-to-End
Chromosome Fusions
TRF2-depleted cells undergo dramatic end-to-end chromosome

fusions (Celli and de Lange, 2005). To test whether any of the fac-
1324 Cell Reports 7, 1320–1332, May 22, 2014 ª2014 The Authors
tors identified at TRF2-depleted telomeres plays a role in this

process, we infected cells with specific shRNAs and tested the

frequency of end-to-end chromosome fusions on metaphase

spreads (Figure 3A). As a positive control, we used an shRNA

directed against MDC1 that results in reduced levels of NHEJ-

mediated telomere fusions (Dimitrova and de Lange, 2006).

Strikingly, this analysis revealed that cells with reduced Ring1b

expression showed approximately a 50% reduction in the rate

of NHEJ-mediated telomere fusions (Figures 3A, 3B, and 3E).



In contrast, efficient knockdown of Rad18, Rap80, or Senp7 did

not show a significant effect on the rate of telomere fusions. The

effect of Ring1b on telomere fusion was further confirmed using

telomere restriction fragment (TRF) analysis on Southern blots

(Figure S3A). Importantly, we exclude that the observed defect

in NHEJ efficiency reflects an alteration in cell-cycle progression

caused by reduced Ring1b levels based on fluorescence-acti-

vated cell sorting (FACS) analysis (Figure S3B). To test whether

the NHEJ defects observed upon Ring1b depletion could be

due to altered DNA damage signaling at TRF2-deficient

telomeres, we tested the induction of phosphorylated H2AX

(gH2AX) and recruitment of 53BP1 in the TRF2F/F Rosa26

CRE-ER cells treated with tamoxifen and infected with the

shRNA construct against Ring1b. As a control, we used a previ-

ously validated shRNA against MDC1 that affects the recruit-

ment of 53BP1 at TRF2-depleted telomeres (Dimitrova and de

Lange, 2006). Knockdown of Ring1b had no significant effect

on the dynamics of gH2AX or 53BP1 to TRF2-depleted telo-

meres, while depletion of MDC1 resulted in impaired recruitment

of 53BP1 as previously described (Figures 3C–3E). In addition,

Ring1b depletion did not impair recruitment of the 53BP1 down-

stream effector RIF1 (Chapman et al., 2013; Escribano-Dı́az

et al., 2013; Zimmermann et al., 2013) to dysfunctional telo-

meres, excluding that the NHEJ defects observed in Ring1b-

depleted cells are due to impaired RIF1 recruitment (Figures

S3C and S3D). These experiments suggest that Ring1b might

play a role at dysfunctional telomeres independent of the dy-

namics of gH2AX and 53BP1 at these sites.

To exclude the possibility that the observed phenotype is

caused by an off-target effect, we generated an shRNA-resistant

allele of Ring1b (Ring1b-WT*). Expression of Ring1b-WT* in

TRF2-deficient cells infected with shRing1b rescued the NHEJ

defects, thus excluding potential off-target effects (Figures 4A

and S4A). Ring1b is a RING finger E3 ubiquitin ligase of the poly-

comb repressive complex 1 (PRC1) that acts in concert with

Bmi1 to ubiquitinate histone H2A on K119 (H2AK119ub), via its

RING finger domain, and to promote gene silencing and chro-

matin compaction (Cao et al., 2005; Stock et al., 2007; Vidal,

2009; Wang et al., 2004). In agreement with our observation

that Ring1b localizes to chromosome ends, we observed an

enrichment of the H2AK119ub mark at telomeres compared to

other genomic loci by chromatin immunoprecipitation (ChIP)

(Figures S4B–S4D). To test whether the enzymatic activity of

Ring1b is required to promote NHEJ at TRF2-depleted cells,

we complemented Ring1b-depleted cells with an shRNA-resis-

tant, catalytically inactive mutant allele of Ring1b carrying a

mutation in the RING domain (Ring1b-I53A*) (Buchwald et al.,

2006). Expression of Ring1b-I53A* in TRF2-deficient cells res-

cues the NHEJ defect observed in the absence of Ring1b to

levels that are comparable to ones observed in cells expressing

the wild-type Ring1b-WT* allele (Figures 4A and S4A). These

data indicate that the catalytic activity of Ring1b is dispensable

for its role in promoting NHEJ at dysfunctional telomeres.

Next, we tested whether inhibition of Ring1b binding partner

Bmi1 by shRNA would affect NHEJ-mediated telomere fusions.

Indeed, expression of two independent shRNA constructs

directed against Bmi1 resulted in a significant reduction in the

rate of telomere fusions in TRF2 null cells (Figures 4B and 4C).
C

Bmi1 inhibition did not affect phosphorylation of H2AX or recruit-

ment of 53BP1 at TRF2-depleted telomeres (Figure 4D), similarly

to what was observed for the inhibition of Ring1b.

To further confirm our findings, we testedwhether cells lacking

Ring1b would exhibit defects in NHEJ-mediated repair of telo-

meres. Expression of a dominant-negative allele of TRF2 in

Ring1bF/F; Rosa26 CRE ER MEFs resulted in DNA damage

activation at telomeres in both Ring1b-deficient and Ring1b-

proficient cells (Figures 4E and S4E–S4G). In contrast, the occur-

rence of end-to-end chromosome fusions upon expression of

the TRF2 dominant-negative allele was severely reduced in

Ring1b-deficient cells (Figure 4F).

Our results suggest that the presence of the heterodimer

Ring1b-Bmi1 is required for efficient NHEJ at chromosome

ends.

Ring1b Plays a Critical Role for Efficient DNA Repair of
Heterochromatin Loci
Next, we asked whether Ring1b-deficient cells show defective

DNA repair throughout the genome. Ring1b null cells were

treated with gamma irradiation to induce random DNA damage.

As controls, we used wild-type cells and NHEJ-defective cells

(Lig4 null) (Kühne et al., 2004). DNA repair efficiencywas assayed

by fraction of activity released (FAR) assay (Gulston et al., 2002)

(Figures S5A and S5B). Our results show that Ring1b null cells do

not show any significant defect in DNA repair when compared to

wild-type cells. In contrast, Lig4 null cells displayed the expected

defect in DNA repair (Figures S5A and S5B). Next, we asked

whether Ring1b activity is required for the repair of DNA damage

occurring at other heterochromatin loci. To test this hypothesis,

we irradiated Ring1bF/F; Rosa26 CRE ER MEFs and assayed

cells for the persistence of the DNA damage marker gH2AX

over time at ‘‘chromocenters,’’ cytological distinct structures

that correspond to pericentric and centromeric heterochromatin

(Guenatri et al., 2004). As a control, we included ATM�/� cells

that were previously shown to have a defect in DNA repair at het-

erochromatin loci (Goodarzi et al., 2008). Our results show that

Ring1b null cells, similarly to ATM�/� cells, show a significant

persistence of heterochromatin-associated gH2AX foci at 6 hr

after irradiation (Figures 5A and 5B). These data suggest that

Ring1b activity is required for efficient repair of DNA damage

occurring at heterochromatin loci. Notably, at 24 hr postirradia-

tion, Ring1b�/� cells repaired most DNA damage lesions as

assessed by gH2AX foci dissipation. In agreement with the

FAR assay data, Ring1b�/� cells did not show a defect in DNA

repair at nonheterochromatin loci, as shown by the dissipation

of gH2AX foci throughout the nuclei (Figure S5C). In conclusion,

our data suggest that the role of Ring1b in DNA repair is specific

for heterochromatin loci.

Chromatin Compaction Activity Plays an Important Role
for Efficient DNA Repair of Dysfunctional Telomeres
Ring1b is associated to chromatin compaction and gene

silencing (Vidal, 2009) and has been shown to be required for

the maintenance of a compact chromatin state atHox loci in em-

bryonic stem cells (Eskeland et al., 2010). The chromatin context

in whichDNAdamage occurs has amajor impact on the pathway

and the efficiency of DNA repair activities, with closed chromatin
ell Reports 7, 1320–1332, May 22, 2014 ª2014 The Authors 1325
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favoring the NHEJ pathway (Chiolo et al., 2011;Miller et al., 2010;

Soria et al., 2012). We therefore hypothesized that reduced

levels of Ring1b could lead to reduced levels of DNA repair at

telomeres due to changes in the heterochromatic state. To test

this hypothesis, we treated TRF2F/F Rosa CRE-ER MEFs with

the histone deacetylase (HDAC) inhibitor trichostatin A (TSA) to

decompact chromatin. TSA treatment did not have a significant

effect on the recruitment of 53BP1 to TRF2-depleted telomeres

(Figure S5D). However, TSA treatment significantly reduced the

percentage of telomere fusions (Figure 5C). FACS analysis

excluded that TSA treatment affects NHEJ indirectly by altering

cell-cycle progression (Figure S5E).

To further validate our hypothesis that loss of chromatin

compaction would result in reduction of NHEJ at dysfunctional

telomeres, we used Suv39 double-null (dn) MEFs (Peters et al.,

2001). The lysine methyltransferases (KMTs) Suv39h1 and

Suv39h2 govern H3K9 trimethylation at pericentric heterochro-

matin (Peters et al., 2001) and were shown to be important for

H3K9me3 deposition at telomeres (Garcı́a-Cao et al., 2004).

The presence of trimethylated histone H3 (H3K9me3) is a hall-

mark of mammalian heterochromatin (Bannister et al., 2001;

Lachner et al., 2001; Rea et al., 2000). Suv39 dn cells display

loss of heterochromatic features such as loss of heterochromatic

association of HP1 proteins and partial decondensation of het-

erochromatic foci (Lachner et al., 2001; Pinheiro et al., 2012).

Expression of a dominant-negative allele of TRF2 in Suv39 dn

MEFs also resulted in a lower occurrence of end-to-end chromo-

some fusions relative to the wild-type control (Figures S5F

and S5G). Moreover, shRNA-mediated depletion of the KMT

Prdm3, which was shown to prevent Suv39h-mediated H3K9

trimethylation resulting in chromatin decompaction at mouse

chromocenters (Pinheiro et al., 2012), significantly reduced the

percentage of fused chromosomes in TRF2-deficient cells rela-

tive to control cells (Figures 5D and S5H).

Collectively, these results suggest that chromatin compaction

is a critical determinant for the frequent occurrence of NHEJ-

mediated fusions at dysfunctional telomeres (see schematic

model in Figure 5E).

DISCUSSION

Our data reveal the dynamic changes that occur at the level of

chromatin upon the induction of DNA damage at mammalian

telomeres. We identified 345 factors that are significantly lost
Figure 4. The Ring1b/Bmi1 Heterodimer Acts on the Chromatin at Dys

(A) Metaphase spreads of TRF2F/F Rosa26 CRE-ER MEFs infected with shLucife

96 hr. Percentages of fused chromosome ends are indicated. Scale bar represe

(B) Metaphase spreads of TRF2F/F Rosa26 CRE-ER MEFs infected with shRNA co

fused chromosome ends are indicated. Scale bar represents 5 mm. Graph show

normalized to shLuciferase as control.

(C) Quantification of end-to-end chromosome fusions in (B).

(D) Quantification of gH2AX- and 53BP1-positive TRF2F/F Rosa26 CRE-ERMEFs i

gH2AX and 53BP1 (cells with five or more gH2AX/53BP1 were counted as posit

(E) Ring1bF/F Rosa26 CRE-ER MEFs (�/+ OHT, 96 hr) were infected with wild-typ

and stained for myc (red), 53BP1 (green), and DAPI (blue). Scale bar represents

(F) Metaphase spreads of Ring1bF/F Rosa26 CRE-ER MEFs treated as in (E) were

(arrowheads). Number of metaphases analyzed and percentage of metaphases

See also Figure S4.
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upon TRF2 depletion at telomeric chromatin. These included

TRF2 and its associated proteins RAP1 and Apollo. In addition,

we identified one factor, CDCA8, that is significantly affected

by the removal of TRF2. We identified 471 factors that are pre-

sent at telomeres regardless of the TRF2 status. These factors

included DNA metabolism genes such as histones, DNA poly-

merases, and telomere-associated proteins that can be re-

cruited to telomeric repeats independently of TRF2 such as the

shelterin components TRF1, TIN2, TPP1, and POT1 and the telo-

mere-associated factors ATRX and DAXX (Lewis et al., 2010;

Wong et al., 2010). Finally, our isolation identified several known

DNA damage response factors that relocalize to telomeres

following TRF2 deletion and several additional proteins that

were not previously associated with the response to telomere

dysfunction. Our validation identified eight proteins that relocal-

ize to dysfunctional telomeres. However, it is important to note

that a number of known DNA damage proteins that have been

shown to play a crucial role in the response to telomere dysfunc-

tion were not identified in our analysis. Notably, RNF8 and

RNF168, which are required for the recruitment of 53BP1, are

missing from our isolations. This could be explained by the tran-

sient nature of the interaction between these ubiquitin ligases at

their DNA damage target sites. Nevertheless, the absence of

such critical factors represents a limitation of our approach

that most likely indicates the lack of other critical factors re-

cruited to dysfunctional telomeres. An additional limitation of

the PICh technique for this type of analysis is the requirement

for a very large amount of starting material for each individual

experiment (over 5 3 108 cells), which limits the number of con-

ditions and time points that can be tested. In addition, we found a

large number of contaminants in our isolations that overlap with

the commonly found contaminants in mass spectrometry exper-

iments (Mellacheruvu et al., 2013).

Despite these limitations, this approach represents an unbi-

ased identification of the dynamic changes of chromatin compo-

sition upon the onset of DNA damage. As such, the lists of

proteins that we identified will represent a valuable resource

not only to the telomere biology field but also to researchers

studying general DNA repair reactions and genome stability

pathways that act throughout the genome.

Finally, we have found a significant role for the polycomb

protein Ring1b in the onset of NHEJ at telomeres. These obser-

vations further substantiate previous observations of a role for

these factors in the response to DNA damage (Chagraoui
functional Telomeres

rase or shRing1b and Ring1b-WT* or Ring1b-I53A* and treated with OHT for

nts 5 mm.

nstructs directed against Bmi1 and treated with OHT for 96 hr. Percentages of

s quantification of relative Bmi1 mRNA levels measured by quantitative PCR,

nfected as described in (B), treated with OHT for 72 hr, and fixed and stained for

ive).

e TRF2 or a TRF2 dominant-negative allele (TRF2DBDM) as indicated and fixed

5 mm.

stained for telomeric DNA (green) to detect end-to-end chromosome fusions

with at least one fusion event are indicated. Scale bar represents 5 mm.
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Figure 5. Compact Chromatin Favors NHEJ-Mediated Repair of Dysfunctional Telomeres

(A) Confluent, stationary-phase Ring1bF/F Rosa26 CRE-ER MEFs untreated or treated with tamoxifen (�/+ OHT) were left untreated (NT) or irradiated (2 Gy) and

harvested at the indicated time points postirradiation. ATM�/�MEFswere used as a control. Cells were fixed and stained for gH2AX (green) andDAPI (blue). Scale

bar represents 5 mm.

(B) Quantification of the total number of heterochromatin-associated gH2AX foci in cells treated as described in (A). Error bars represent SD of the average of

three independent experiments.

(legend continued on next page)
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et al., 2011; Chou et al., 2010; Facchino et al., 2010; Ginjala

et al., 2011; Ismail et al., 2010). Strikingly, however, our data

suggest that in the absence of Ring1b, the signaling events

downstream of ATM activation such as gH2AX and 53BP1

recruitment are not affected. These data are in agreement

with the observation that recruitment of 53BP1 is independent

of Ring1b-mediated H2A ubiquitylation (Gatti et al., 2012; Mat-

tiroli et al., 2012).

Our data suggest that Ring1b plays a critical role to maintain

a compact chromatin status that is permissive for NHEJ.

Indeed, previous reports have shown that compact chromatin

is more prone to undergo NHEJ-mediated DNA repair (Chiolo

et al., 2011; Miller et al., 2010). Ring1b activity in chromatin

compaction has been well established in the context of gene

expression at Hox loci (Eskeland et al., 2010). Notably, it has

been reported that the E3 activity of Ring1b is not required

for chromatin compaction, similarly to what we found in the

context of promotion of NHEJ at dysfunctional telomeres. We

found that treatment of cells with the HDAC inhibitor TSA re-

sulted in reduced levels of NHEJ at telomeres, thus further sug-

gesting that chromatin compaction is critical for NHEJ at

dysfunctional telomeres. Similarly, we found that reducing

H3K9me3 levels in cells depleted of TRF2, either by depletion

of Prdm3 or by the use of Suv39 dn MEFs, impaired the forma-

tion of NHEJ-mediated end-to-end chromosome fusions. These

results are in agreement with previous results showing a role for

HDAC1 and HDAC2 in NHEJ-dependent DNA repair at

genome-wide sites of DNA lesion (Miller et al., 2010) as well

as with the observation that TSA treatment shifts the repair

choice toward the homologous recombination pathway (Tang

et al., 2013). The heterochromatic status of telomeres would

therefore explain why telomere dysfunction preferentially trig-

gers NHEJ-mediated DNA repair and suggests that alterations

in chromatin status could be responsible for the increased ho-

mologous recombination observed at telomeres in tumors that

engage the alternative telomere-lengthening (ALT) pathway

(Cesare and Reddel, 2008). In line with this hypothesis,

increased rates of telomere sister chromatid exchange were

recently reported in ALT tumor cells subjected to TSA treatment

(Jung et al., 2013).

EXPERIMENTAL PROCEDURES

Telomeric Chromatin Isolation by PICh

Proteomics of isolated chromatin segments (PICh) was carried out as previ-

ously described (Déjardin and Kingston, 2009) with the following modifica-

tions: 5 3 108 MEFs were used per sample, and two sonication cycles were

performed using a Misonix S-4000 (first cycle, power 70%; second cycle,

power 40%). Each cycle consisted of 15 s on and 45 s off for a total process

time of 2 min. For hybridization with telomeric probe, a PNA probe (0.6 mM)

was used (desthiobiotin-112 atoms spacer-TTAGGGTTAGGGTTAGGGTT

AGGG) using the conditions described before, with the exception that denatur-

ation was carried out at 65�C for 6 min.
(C) Metaphase spreads of TRF2F/F Rosa26 CRE-ER MEFs treated with OHT for 7

ends are indicated. Scale bar represents 5 mm.

(D) Metaphase spreads of TRF2F/F Rosa26 CRE-ER MEFs infected with an shRN

OHT for 72 hr. Scale bar represents 5 mm.

(E) Model for the role of chromatin compaction in NHEJ-mediated repair of dysfu

See also Figure S5.
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Mass Spectrometry Analysis

For mass spectrometry, analysis samples were denatured, reduced, and alky-

lated prior to an overnight digestion with trypsin. Peptide mixtures were

analyzed by nanoflow liquid chromatography mass spectrometry using an

Eksigent nanopump and LTQ-Orbitrap mass spectrometer (Thermo Scientific)

using a seven-step MudPIT separation. TandemMS spectra were collected in

a data-dependent fashion, and resulting spectra were extracted using

RawXtract. Protein identification was done with Integrated Proteomics Pipe-

line (IP2) by searching against UniProt Human database and filtering to 1%

false positive at the spectrum level using DTASelect.

MEFs and shRNA Infections

TRF2F/F Rosa26 CRE-ER MEFs were previously described (Okamoto et al.,

2013). Ring1bF/F Rosa CRE ER MEFs were derived from a cross between

Ring1b conditional mice (de Napoles et al., 2004) and Rosa26 CRE-ER mice

(Ventura et al., 2007). CRE activation was obtained treating cells with 4-hy-

droxytamoxifen (OHT) at a final concentration of 0.6 mM. Suv39 dn immortal-

ized MEFs (iMEFs) and wild-type control iMEFs were a kind gift from T.

Jenuwein.

shRNAs were cloned into the pLKO-puromycin lentiviral vector (for se-

quences see Supplemental Experimental Procedures). shRNA infections

were performed as previously described (Okamoto et al., 2013). Knockdown

efficiency was analyzed by quantitative PCR using Roche Sybr Green Master-

mix according to the manufacturer’s instructions on a LightCycler 480 II

(Roche).

Immunofluorescence, IF-FISH, ChIP, and Immunoblotting

Immunoblots and IF were performed using the protocols described previously

(Celli and de Lange, 2005). For Ring1b detection by immunoblot, extracts were

prepared according to Vella et al. (2013). For IF, where indicated cells were

permeabilized with Triton X-100 buffer (for details, see the Supplemental

Experimental Procedures). Fluorescence in situ hybridization immunofluores-

cence (FISH-IF) staining was performed using the protocol developed by

Sedivy and colleagues (Herbig et al., 2004). For quantification, at least 100

cells were counted following FISH-IF analysis. Cells with at least five foci

colocalizing with telomere DNA or TRF1 were scored as positive. Error bars

indicate SDs and derive from averages of three independent experiments.

p values were calculated using the Student’s t test.

ChIP experiments were performed as described previously (Loayza and De

Lange, 2003; O’Sullivan et al., 2010; Ye and de Lange, 2004). Full details of all

other experimental procedures are given in the Supplemental Experimental

Procedures.
SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

five figures, and three tables and can be found with this article online at

http://dx.doi.org/10.1016/j.celrep.2014.04.002.
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