62 research outputs found

    Glucose Oxidation to Pyruvate Is Not Essential for Brucella suis Biovar 5 Virulence in the Mouse Model

    Get PDF
    Brucella species cause brucellosis, a worldwide extended zoonosis. The brucellae are related to free-living and plant-associated alpha 2-Proteobacteria and, since they multiply within host cells, their metabolism probably reflects this adaptation. To investigate this, we used the rodent-associated Brucella suis biovar 5, which in contrast to the ruminant-associated Brucella abortus and Brucella melitensis and other B. suis biovars, is fast-growing and conserves the ancestral Entner-Doudoroff pathway (EDP) present in the plant-associated relatives. We constructed mutants in Edd (glucose-6-phosphate dehydratase; first EDP step), PpdK (pyruvate phosphate dikinase; phosphoenolpyruvate pyruvate), and Pyk (pyruvate kinase; phosphoenolpyruvate -> pyruvate). In a chemically defined medium with glucose as the only C source, the Edd mutant showed reduced growth rates and the triple Edd-PpdK-Pyk mutant did not grow. Moreover, the triple mutant was also unable to grow on ribose or xylose. Therefore, B. suis biovar 5 sugar catabolism proceeds through both the Pentose Phosphate shunt and EDP, and EDP absence and exclusive use of the shunt could explain at least in part the comparatively reduced growth rates of B. melitensis and B. abortus. The triple Edd-PpdK-Pyk mutant was not attenuated in mice. Thus, although an anabolic use is likely, this suggests that hexose/pentose catabolism to pyruvate is not essential for B. suis biovar 5 multiplication within host cells, a hypothesis consistent with the lack of classical glycolysis in all Brucella species and of EDP in B. melitensis and B. abortus. These results and those of previous works suggest that within cells, the brucellae use mostly 3 and 4 C substrates fed into anaplerotic pathways and only a limited supply of 5 and 6 C sugars, thus favoring the EDP loss observed in some species

    BRCA2 polymorphic stop codon K3326X and the risk of breast, prostate, and ovarian cancers

    Get PDF
    Background: The K3326X variant in BRCA2 (BRCA2*c.9976A>T; p.Lys3326*; rs11571833) has been found to be associated with small increased risks of breast cancer. However, it is not clear to what extent linkage disequilibrium with fully pathogenic mutations might account for this association. There is scant information about the effect of K3326X in other hormone-related cancers. Methods: Using weighted logistic regression, we analyzed data from the large iCOGS study including 76 637 cancer case patients and 83 796 control patients to estimate odds ratios (ORw) and 95% confidence intervals (CIs) for K3326X variant carriers in relation to breast, ovarian, and prostate cancer risks, with weights defined as probability of not having a pathogenic BRCA2 variant. Using Cox proportional hazards modeling, we also examined the associations of K3326X with breast and ovarian cancer risks among 7183 BRCA1 variant carriers. All statistical tests were two-sided. Results: The K3326X variant was associated with breast (ORw = 1.28, 95% CI = 1.17 to 1.40, P = 5.9x10- 6) and invasive ovarian cancer (ORw = 1.26, 95% CI = 1.10 to 1.43, P = 3.8x10-3). These associations were stronger for serous ovarian cancer and for estrogen receptor–negative breast cancer (ORw = 1.46, 95% CI = 1.2 to 1.70, P = 3.4x10-5 and ORw = 1.50, 95% CI = 1.28 to 1.76, P = 4.1x10-5, respectively). For BRCA1 mutation carriers, there was a statistically significant inverse association of the K3326X variant with risk of ovarian cancer (HR = 0.43, 95% CI = 0.22 to 0.84, P = .013) but no association with breast cancer. No association with prostate cancer was observed. Conclusions: Our study provides evidence that the K3326X variant is associated with risk of developing breast and ovarian cancers independent of other pathogenic variants in BRCA2. Further studies are needed to determine the biological mechanism of action responsible for these associations

    Identification of six new susceptibility loci for invasive epithelial ovarian cancer.

    Get PDF
    Genome-wide association studies (GWAS) have identified 12 epithelial ovarian cancer (EOC) susceptibility alleles. The pattern of association at these loci is consistent in BRCA1 and BRCA2 mutation carriers who are at high risk of EOC. After imputation to 1000 Genomes Project data, we assessed associations of 11 million genetic variants with EOC risk from 15,437 cases unselected for family history and 30,845 controls and from 15,252 BRCA1 mutation carriers and 8,211 BRCA2 mutation carriers (3,096 with ovarian cancer), and we combined the results in a meta-analysis. This new study design yielded increased statistical power, leading to the discovery of six new EOC susceptibility loci. Variants at 1p36 (nearest gene, WNT4), 4q26 (SYNPO2), 9q34.2 (ABO) and 17q11.2 (ATAD5) were associated with EOC risk, and at 1p34.3 (RSPO1) and 6p22.1 (GPX6) variants were specifically associated with the serous EOC subtype, all with P < 5 × 10(-8). Incorporating these variants into risk assessment tools will improve clinical risk predictions for BRCA1 and BRCA2 mutation carriers.COGS project is funded through a European Commission's Seventh Framework Programme grant (agreement number 223175 ] HEALTH ]F2 ]2009 ]223175). The CIMBA data management and data analysis were supported by Cancer Research.UK grants 12292/A11174 and C1287/A10118. The Ovarian Cancer Association Consortium is supported by a grant from the Ovarian Cancer Research Fund thanks to donations by the family and friends of Kathryn Sladek Smith (PPD/RPCI.07). The scientific development and funding for this project were in part supported by the US National Cancer Institute GAME ]ON Post ]GWAS Initiative (U19 ]CA148112). This study made use of data generated by the Wellcome Trust Case Control consortium. Funding for the project was provided by the Wellcome Trust under award 076113. The results published here are in part based upon data generated by The Cancer Genome Atlas Pilot Project established by the National Cancer Institute and National Human Genome Research Institute (dbGap accession number phs000178.v8.p7). The cBio portal is developed and maintained by the Computational Biology Center at Memorial Sloan ] Kettering Cancer Center. SH is supported by an NHMRC Program Grant to GCT. Details of the funding of individual investigators and studies are provided in the Supplementary Note. This study made use of data generated by the Wellcome Trust Case Control consortium, funding for which was provided by the Wellcome Trust under award 076113. The results published here are, in part, based upon data generated by The Cancer Genome Atlas Pilot Project established by the National Cancerhttp://dx.doi.org/10.1038/ng.3185This is the Author Accepted Manuscript of 'Identification of six new susceptibility loci for invasive epithelial ovarian cancer' which was published in Nature Genetics 47, 164–171 (2015) © Nature Publishing Group - content may only be used for academic research

    The FANCM:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer

    Get PDF
    Breast cancer is a common disease partially caused by genetic risk factors. Germline pathogenic variants in DNA repair genes BRCA1, BRCA2, PALB2, ATM, and CHEK2 are associated with breast cancer risk. FANCM, which encodes for a DNA translocase, has been proposed as a breast cancer predisposition gene, with greater effects for the ER-negative and triple-negative breast cancer (TNBC) subtypes. We tested the three recurrent protein-truncating variants FANCM:p.Arg658*, p.Gln1701*, and p.Arg1931* for association with breast cancer risk in 67,112 cases, 53,766 controls, and 26,662 carriers of pathogenic variants of BRCA1 or BRCA2. These three variants were also studied functionally by measuring survival and chromosome fragility in FANCM (-/-) patient-derived immortalized fibroblasts treated with diepoxybutane or olaparib. We observed that FANCM:p.Arg658* was associated with increased risk of ER-negative disease and TNBC (OR = 2.44, P = 0.034 and OR = 3.79; P = 0.009, respectively). In a country-restricted analysis, we confirmed the associations detected for FANCM:p.Arg658* and found that also FANCM:p.Arg1931* was associated with ER-negative breast cancer risk (OR = 1.96; P = 0.006). The functional results indicated that all three variants were deleterious affecting cell survival and chromosome stability with FANCM:p.Arg658* causing more severe phenotypes. In conclusion, we confirmed that the two rare FANCM deleterious variants p.Arg658* and p.Arg1931* are risk factors for ER-negative and TNBC subtypes. Overall our data suggest that the effect of truncating variants on breast cancer risk may depend on their position in the gene. Cell sensitivity to olaparib exposure, identifies a possible therapeutic option to treat FANCM-associated tumors

    The FANCM:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer

    Get PDF
    Breast cancer is a common disease partially caused by genetic risk factors. Germline pathogenic variants in DNA repair genes BRCA1, BRCA2, PALB2, ATM, and CHEK2 are associated with breast cancer risk. FANCM, which encodes for a DNA translocase, has been proposed as a breast cancer predisposition gene, with greater effects for the ER-negative and triple-negative breast cancer (TNBC) subtypes. We tested the three recurrent protein-truncating variants FANCM:p.Arg658*, p.Gln1701*, and p.Arg1931* for association with breast cancer risk in 67,112 cases, 53,766 controls, and 26,662 carriers of pathogenic variants of BRCA1 or BRCA2. These three variants were also studied functionally by measuring survival and chromosome fragility in FANCM−/− patient-derived immortalized fibroblasts treated with diepoxybutane or olaparib. We observed that FANCM:p.Arg658* was associated with increased risk of ER-negative disease and TNBC (OR = 2.44, P = 0.034 and OR = 3.79; P = 0.009, respectively). In a country-restricted analysis, we confirmed the associations detected for FANCM:p.Arg658* and found that also FANCM:p.Arg1931* was associated with ER-negative breast cancer risk (OR = 1.96; P = 0.006). The functional results indicated that all three variants were deleterious affecting cell survival and chromosome stability with FANCM:p.Arg658* causing more severe phenotypes. In conclusion, we confirmed that the two rare FANCM deleterious variants p.Arg658* and p.Arg1931* are risk factors for ER-negative and TNBC subtypes. Overall our data suggest that the effect of truncating variants on breast cancer risk may depend on their position in the gene. Cell sensitivity to olaparib exposure, identifies a possible therapeutic option to treat FANCM-associated tumors

    Identification of independent association signals and putative functional variants for breast cancer risk through fine-scale mapping of the 12p11 locus.

    Get PDF
    BACKGROUND: Multiple recent genome-wide association studies (GWAS) have identified a single nucleotide polymorphism (SNP), rs10771399, at 12p11 that is associated with breast cancer risk. METHOD: We performed a fine-scale mapping study of a 700 kb region including 441 genotyped and more than 1300 imputed genetic variants in 48,155 cases and 43,612 controls of European descent, 6269 cases and 6624 controls of East Asian descent and 1116 cases and 932 controls of African descent in the Breast Cancer Association Consortium (BCAC; http://bcac.ccge.medschl.cam.ac.uk/ ), and in 15,252 BRCA1 mutation carriers in the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). Stepwise regression analyses were performed to identify independent association signals. Data from the Encyclopedia of DNA Elements project (ENCODE) and the Cancer Genome Atlas (TCGA) were used for functional annotation. RESULTS: Analysis of data from European descendants found evidence for four independent association signals at 12p11, represented by rs7297051 (odds ratio (OR) = 1.09, 95 % confidence interval (CI) = 1.06-1.12; P = 3 × 10(-9)), rs805510 (OR = 1.08, 95 % CI = 1.04-1.12, P = 2 × 10(-5)), and rs1871152 (OR = 1.04, 95 % CI = 1.02-1.06; P = 2 × 10(-4)) identified in the general populations, and rs113824616 (P = 7 × 10(-5)) identified in the meta-analysis of BCAC ER-negative cases and BRCA1 mutation carriers. SNPs rs7297051, rs805510 and rs113824616 were also associated with breast cancer risk at P < 0.05 in East Asians, but none of the associations were statistically significant in African descendants. Multiple candidate functional variants are located in putative enhancer sequences. Chromatin interaction data suggested that PTHLH was the likely target gene of these enhancers. Of the six variants with the strongest evidence of potential functionality, rs11049453 was statistically significantly associated with the expression of PTHLH and its nearby gene CCDC91 at P < 0.05. CONCLUSION: This study identified four independent association signals at 12p11 and revealed potentially functional variants, providing additional insights into the underlying biological mechanism(s) for the association observed between variants at 12p11 and breast cancer risk.UK funding includes Cancer Research UK and NIH.This is the final version of the article. It first appeared from BioMed Central via http://dx.doi.org/10.1186/s13058-016-0718-

    Final results from the PERUSE study of first-line pertuzumab plus trastuzumab plus a taxane for HER2-positive locally recurrent or metastatic breast cancer, with a multivariable approach to guide prognostication

    Get PDF
    Background: The phase III CLinical Evaluation Of Pertuzumab And TRAstuzumab (CLEOPATRA) trial established the combination of pertuzumab, trastuzumab and docetaxel as standard first-line therapy for human epidermal growth factor receptor 2 (HER2)-positive locally recurrent/metastatic breast cancer (LR/mBC). The multicentre single-arm PERtUzumab global SafEty (PERUSE) study assessed the safety and efficacy of pertuzumab and trastuzumab combined with investigator-selected taxane in this setting. Patients and methods: Eligible patients with inoperable HER2-positive LR/mBC and no prior systemic therapy for LR/mBC (except endocrine therapy) received docetaxel, paclitaxel or nab-paclitaxel with trastuzumab and pertuzumab until disease progression or unacceptable toxicity. The primary endpoint was safety. Secondary endpoints included progression-free survival (PFS) and overall survival (OS). Prespecified subgroup analyses included subgroups according to taxane, hormone receptor (HR) status and prior trastuzumab. Exploratory univariable analyses identified potential prognostic factors; those that remained significant in multivariable analysis were used to analyse PFS and OS in subgroups with all, some or none of these factors. Results: Of 1436 treated patients, 588 (41%) initially received paclitaxel and 918 (64%) had HR-positive disease. The most common grade 653 adverse events were neutropenia (10%, mainly with docetaxel) and diarrhoea (8%). At the final analysis (median follow-up: 5.7 years), median PFS was 20.7 [95% confidence interval (CI) 18.9-23.1] months overall and was similar irrespective of HR status or taxane. Median OS was 65.3 (95% CI 60.9-70.9) months overall. OS was similar regardless of taxane backbone but was more favourable in patients with HR-positive than HR-negative LR/mBC. In exploratory analyses, trastuzumab-pretreated patients with visceral disease had the shortest median PFS (13.1 months) and OS (46.3 months). Conclusions: Mature results from PERUSE show a safety and efficacy profile consistent with results from CLEOPATRA and median OS exceeding 5 years. Results suggest that paclitaxel is a valid alternative to docetaxel as backbone chemotherapy. Exploratory analyses suggest risk factors that could guide future trial design

    Polygenic risk modeling for prediction of epithelial ovarian cancer risk

    Get PDF
    Polygenic risk scores (PRS) for epithelial ovarian cancer (EOC) have the potential to improve risk stratification. Joint estimation of Single Nucleotide Polymorphism (SNP) effects in models could improve predictive performance over standard approaches of PRS construction. Here, we implemented computationally efficient, penalized, logistic regression models (lasso, elastic net, stepwise) to individual level genotype data and a Bayesian framework with continuous shrinkage, "select and shrink for summary statistics" (S4), to summary level data for epithelial non-mucinous ovarian cancer risk prediction. We developed the models in a dataset consisting of 23,564 non-mucinous EOC cases and 40,138 controls participating in the Ovarian Cancer Association Consortium (OCAC) and validated the best models in three populations of different ancestries: prospective data from 198,101 women of European ancestries; 7,669 women of East Asian ancestries; 1,072 women of African ancestries, and in 18,915 BRCA1 and 12,337 BRCA2 pathogenic variant carriers of European ancestries. In the external validation data, the model with the strongest association for non-mucinous EOC risk derived from the OCAC model development data was the S4 model (27,240 SNPs) with odds ratios (OR) of 1.38 (95% CI: 1.28-1.48, AUC: 0.588) per unit standard deviation, in women of European ancestries; 1.14 (95% CI: 1.08-1.19, AUC: 0.538) in women of East Asian ancestries; 1.38 (95% CI: 1.21-1.58, AUC: 0.593) in women of African ancestries; hazard ratios of 1.36 (95% CI: 1.29-1.43, AUC: 0.592) in BRCA1 pathogenic variant carriers and 1.49 (95% CI: 1.35-1.64, AUC: 0.624) in BRCA2 pathogenic variant carriers. Incorporation of the S4 PRS in risk prediction models for ovarian cancer may have clinical utility in ovarian cancer prevention programs

    Identification of four novel susceptibility loci for oestrogen receptor negative breast cancer

    Get PDF
    Common variants in 94 loci have been associated with breast cancer including 15 loci with genome-wide significant associations (P<5 × 10−8) with oestrogen receptor (ER)-negative breast cancer and BRCA1-associated breast cancer risk. In this study, to identify new ER-negative susceptibility loci, we performed a meta-analysis of 11 genome-wide association studies (GWAS) consisting of 4,939 ER-negative cases and 14,352 controls, combined with 7,333 ER-negative cases and 42,468 controls and 15,252 BRCA1 mutation carriers genotyped on the iCOGS array. We identify four previously unidentified loci including two loci at 13q22 near KLF5, a 2p23.2 locus near WDR43 and a 2q33 locus near PPIL3 that display genome-wide significant associations with ER-negative breast cancer. In addition, 19 known breast cancer risk loci have genome-wide significant associations and 40 had moderate associations (P<0.05) with ER-negative disease. Using functional and eQTL studies we implicate TRMT61B and WDR43 at 2p23.2 and PPIL3 at 2q33 in ER-negative breast cancer aetiology. All ER-negative loci combined account for ∼11% of familial relative risk for ER-negative disease and may contribute to improved ER-negative and BRCA1 breast cancer risk prediction

    Transcriptome-wide association study of breast cancer risk by estrogen-receptor status

    Get PDF
    Previous transcriptome-wide association studies (TWAS) have identified breast cancer risk genes by integrating data from expression quantitative loci and genome-wide association studies (GWAS), but analyses of breast cancer subtype-specific associations have been limited. In this study, we conducted a TWAS using gene expression data from GTEx and summary statistics from the hitherto largest GWAS meta-analysis conducted for breast cancer overall, and by estrogen receptor subtypes (ER+ and ER-). We further compared associations with ER+ and ER- subtypes, using a case-only TWAS approach. We also conducted multigene conditional analyses in regions with multiple TWAS associations. Two genes, STXBP4 and HIST2H2BA, were specifically associated with ER+ but not with ER- breast cancer. We further identified 30 TWAS-significant genes associated with overall breast cancer risk, including four that were not identified in previous studies. Conditional analyses identified single independent breast-cancer gene in three of six regions harboring multiple TWAS-significant genes. Our study provides new information on breast cancer genetics and biology, particularly about genomic differences between ER+ and ER- breast cancer.Peer reviewe
    corecore