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Abstract

Previous transcriptome‐wide association studies (TWAS) have identified breast

cancer risk genes by integrating data from expression quantitative loci and

genome‐wide association studies (GWAS), but analyses of breast cancer

subtype‐specific associations have been limited. In this study, we conducted a

TWAS using gene expression data from GTEx and summary statistics from the

hitherto largest GWAS meta‐analysis conducted for breast cancer overall, and

by estrogen receptor subtypes (ER+ and ER−). We further compared asso-

ciations with ER+ and ER− subtypes, using a case‐only TWAS approach. We

also conducted multigene conditional analyses in regions with multiple TWAS

associations. Two genes, STXBP4 and HIST2H2BA, were specifically associated

with ER+ but not with ER– breast cancer. We further identified 30 TWAS‐
significant genes associated with overall breast cancer risk, including four that

were not identified in previous studies. Conditional analyses identified single

independent breast‐cancer gene in three of six regions harboring multiple

TWAS‐significant genes. Our study provides new information on breast cancer

genetics and biology, particularly about genomic differences between ER+ and

ER− breast cancer.

KEYWORD S

breast cancer subtype, causal gene, GWAS, TWAS

1 | INTRODUCTION

Breast cancer is the most common malignancy among
women worldwide (Bray et al., 2018). The disease has a
strong inherited component (Beggs & Hodgson, 2009);
linkage studies have identified infrequent mutations in
BRCA1/2 (Easton et al., 2007; Seal et al., 2006; Turnbull
et al., 2010) and genome‐wide association studies
(GWAS) have identified 177 susceptibility loci to date
(Michailidou et al., 2017). However, these GWAS‐
discovered variants explain only 18% of the familial re-
lative risk of breast cancer. Moreover, the causal me-
chanism driving GWAS associations remains largely
unknown, as many variants are located in noncoding or
intergenic regions, and are not in strong linkage dis-
equilibrium (LD) with known protein‐coding variants
(Beggs & Hodgson, 2009; Michailidou et al., 2015).

Breast cancer is a heterogeneous disease consisting of
several well‐established subtypes. One of the most im-
portant markers of breast cancer subtypes is estrogen
receptor (ER) status. ER+ and ER− tumors differ in
etiology (X. R. Yang, Chang‐Claude, et al., 2011), genetic

predisposition (Mavaddat, Antoniou, Easton, & Garcia‐
Closas, 2010), and clinical behavior (Blows et al., 2010).
ER− tumor occurs more often among younger women,
and patients are more likely to carry BRCA1 pathogenic
variants (Atchley et al., 2008; Garcia‐Closas et al., 2013).
ER− tumor also has worse short‐term prognosis. Among
the 177 GWAS‐identified breast cancer‐associated single
nucleotide polymorphisms (SNPs), around 50 are more
strongly associated with ER+ disease and 20 are more
strongly associated with ER− disease (Michailidou
et al., 2017; Milne et al., 2017).

SNPs associated with complex traits are more likely to
be in regulatory regions than in protein‐coding regions,
and many of these SNPs are also associated with ex-
pression levels of nearby genes (Nicolae et al., 2010). For
example, breast cancer GWAS‐identified variants at
6q25.1 regulate ESR1, but also coregulate other local
genes such as RMND1, ARMT1, and CCDC170 (Dunning
et al., 2016, p. 1). These results suggest that by integrating
genotype, phenotype, and gene expression, we can
identify novel trait‐associated genes and understand
biological mechanisms. However, due to costs and tissue
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availability, acquiring GWAS and gene expression data
for the same set of individuals remains challenging.

A recently published approach, referred to as
transcriptome‐wide association study (TWAS; Gamazon
et al., 2015; Gusev et al., 2016), overcomes these difficulties
by using a relatively small set of reference individuals for
whom both gene expression and SNPs have been measured
to impute the cis‐genetic component of expression for a
much larger set of individuals from their GWAS summary
statistics. The association between the predicted gene
expression and traits can then be tested. This method has
been shown to have greater power relative to GWAS; and
has identified 1,196 trait‐associated genes across 30 complex
traits in a recently performed multitissue TWAS (Mancuso
et al., 2017).

To date, three TWAS of breast cancer have been con-
ducted (Gao, Pierce, Olopade, Im, & Huo, 2017; Hoffman
et al., 2017; Wu et al., 2018). A fourth study linked expression
quantitative loci (eQTL) data across multiple tissues and
breast cancer GWAS results using EUGENE, a statistical
approach that sums evidence for association with disease
across eQTLs regardless of directionality. That study then
tested EUGENE‐significant genes using a TWAS statistic,
which does take directionality into account (Ferreira
et al., 2019). The two earliest TWAS used GWAS data from
the National Cancer Institute's “Up for a Challenge” com-
petition, which included data from 12,100 breast cancer cases
(of which 3,900 had ER− disease) and 11,400 controls, as
well as eQTL data from breast tissue and whole blood from
the GTEx and DGN projects (Gao et al., 2017; Hoffman
et al., 2017). The subsequent TWAS by Wu et al. (2018) and
the EUGENE analysis by Ferreira et al. (2019) used results
from a much larger GWAS conducted by the Breast Cancer
Association Consortium (BCAC), which included 122,977
cases (of which 21,468 had ER− disease) and 105,974 con-
trols. Together, these four studies have identified 59 genes
whose predicted expression levels are associated with risk of
overall breast cancer, and five associated with risk of ER−
disease. Of these 64 genes, 30 are at loci not previously
identified by breast cancer GWAS.

These previous TWAS largely focused on overall
breast cancer risk. Analyses of ER− disease either
were conducted using a small sample size
(Gao et al., 2017) or did not scan all genes using a
directional TWAS approach (Ferreira et al., 2019).
Moreover, none of the previous analyses considered
ER+ disease specifically or examined differences in
association between predicted gene expression and
ER+ versus ER− disease.

The interpretation of TWAS results is not straight-
forward (Wainberg et al., 2019). Specifically, TWAS
statistic by itself cannot distinguish between a mediated
effect (SNPs influence breast cancer risk by changing the

expression of the tested gene), pleiotropy (SNPs asso-
ciated with gene expression also influence breast cancer
risk through another mechanism), or colocalization
(SNPs associated with gene expression are in LD with
other SNPs that influence breast cancer risk through
another mechanism). Previous studies have conducted
limited sensitivity analyses (e.g., Wu et al., 2018 and
Ferreira et al., 2019 conditioned the TWAS tests on lead
GWAS SNPs), but the genetic architecture at TWAS‐
identified loci remains largely unclear.

In the current analysis, we complement previous work by
conducting a TWAS for overall breast cancer and for ER+
and ER− subtypes. We also applied a case‐only TWAS test to
identify predicted transcript levels that were differentially
associated with ER+ and ER− disease. We conducted ex-
panded sensitivity analyses, conditioning on multiple TWAS‐
significant genes in a region to account for possible con-
founding due to LD (colocalization). We chose to focus on
the expression of normal breast tissue of European ancestry
women to maximize specificity and identify good targets for
near‐term follow‐up experiments in mammary cells. One
advantage of using a biologically relevant tissue is that it both
increases the a priori plausibility of observed associations and
increases the likelihood that genes with observed associa-
tions will be expressed and influence tumor development in
cells from the target tissue. We have reproduced previous
results (Ferreira et al., 2019; Wu et al., 2018) and provided
evidence regarding the independent associations of multiple
genes in regions containing one or more TWAS‐significant
genes. We also identified genes with subtype‐specific asso-
ciations, highlighting different biological mechanisms likely
underlying the disease subtypes.

2 | MATERIAL AND METHODS

2.1 | Gene expression reference panel

The transcriptome and high‐density genotyping data
used to build the gene expression model (reference panel)
were retrieved from GTEx (GTEx Consortium, 2015), a
consortium collected high‐quality gene expression
RNA‐seq data across 44 body sites from 449 donors, and
genome‐wide genetic information. For the current study,
we included 67 women of European ancestry who pro-
vided normal breast mammary tissues. RNA samples
extracted from tissues were sequenced to generate data
on 12,696 transcripts. Genomic DNA samples were gen-
otyped using Illumina OMNI 5M or 2.5M arrays,
processed with a standard GTEx protocol. Briefly, SNPs
with call rates <98%, with differential missingness be-
tween the two array experiments (5M or 2.5M), with
Hardy‐Weinberg equilibrium p< 10−6 or showing batch
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effects were excluded. The genotypes were then imputed
to the Haplotype Reference Consortium reference panel
(McCarthy et al., 2016) using Minimac3 for imputation
and SHAPEIT for pre‐phasing (Delaneau, Marchini, &
Zagury, 2011; Howie, Donnelly, & Marchini, 2009). Only
SNPs with high imputation quality (r2≥ .8), minor allele
frequency (MAF) ≥0.05, and were included in the Hap-
Map Phase 2 version were used to build the expression
prediction models.

2.2 | Breast cancer meta‐GWAS data

The GWAS breast cancer summary‐level data were
mainly provided by the Breast Cancer Association Con-
sortium (BCAC; Michailidou et al., 2017), as well as the
Consortium of Investigators of Modifiers of BRCA1/2
(CIMBA). BCAC conducted the largest breast cancer
meta‐GWAS to date (referred as the overall breast cancer
GWAS analysis). The BCAC included 122,977 cases and
105,974 controls of European ancestry. Among these,
46,785 cases and 42,892 controls were genotyped using
the Illumina iSelect genotyping array (iCOGS) on 211,155
SNPs; and 61,282 cases and 45,494 controls were geno-
typed using the Illumina OncoArray on 570,000 SNPs
(Yovel, Franz, Stilz, & Schnitzler, 2008). The study also
included data from 11 other GWAS on 14,910 cases and
17,588 controls. Genetic data for all individual partici-
pating studies were imputed to the 1000 Genomes Project
Phase 3 v5 EUR reference panel Logistic regression was
fitted to estimate per‐allele odds ratios (ORs), adjusting
for country and top principal components (PCs). Inverse
variance fixed‐effect meta‐analysis was used to combine
the genetic association for breast cancer risk across stu-
dies (Milne et al., 2017). In CIMBA, genotypes were
generated by the Illumina OncoArray and imputed to the
1000 Genomes Project Phase 3 v5 EUR reference panel
(Amos et al., 2016). A retrospective cohort analysis fra-
mework was adopted to estimate per‐allele hazard ratios
(HRs), modelling time‐to‐breast‐cancer and stratified
by country, Ashkenazi Jewish origin and birth cohort
(Antoniou et al., 2005; Barnes et al., 2012). Fixed‐effect
meta‐analysis (Willer, Li, & Abecasis, 2010) was per-
formed to combine results across genotyping initiatives
within the two consortia, assuming that the OR and HR
estimates had roughly the same underlying relative risk.
We restricted subsequent analyses to SNPs with an im-
putation r2 > .3, and an MAF> 0.005 across all platforms
were included in the analysis (approximately 11.5M).

For the ER+ subtype, meta‐GWAS summary data
based on 69,501 ER+ cases and 105,974 controls (part of
the overall breast cancer samples) were included and
analyzed (Mavaddat et al., 2015). For the ER− subtype,

meta‐GWAS summary data based on 21,468 ER− cases
and 105,974 controls from the BCAC were combined
with 9,414 additional BRCA1 mutation‐positive cases and
9,494 BRCA1 mutation‐positive controls from CIMBA
(Milne et al., 2017).

To distinguish different genetic signals between ER+
and ER− subtypes, we further retrieved GWAS summary‐
level data on a case‐only GWAS, which compared ER+
patients (sample size: 23,330 in iCOGs and 44,746 in
OncoArray) to ER− patients (sample size: 5,479 and
11,856; Milne et al., 2017). Logistic regression was per-
formed to test the association between genetic variants
with known ER status in the two studies separately, ad-
justing for substudy and top PCs for iCOGs, and patients’
countries and top PCs for OncoArray. Results were then
combined using a fixed‐effect meta‐analysis.

2.3 | Constructing expression weights

Before constructing the expression model (using GTEx data,
regress gene expression on SNPs), we set several criteria to
select eligible candidate genes for inclusion in the model
(from the total 12,696 transcripts). We used a REML algo-
rithm implemented in GCTA to estimate the cis (500 base‐
pair window surrounding transcription start site) SNP‐
heritability (cis‐hg2) for each transcript expression
(Cai et al., 2014; J. Yang et al., 2010). Only genes with
significant heritability (nominal p≤ .01) were included in
the subsequent model construction (J. Yang, Lee, Goddard,
& Visscher, 2011). The p values for null hypotheses
cis‐hg2 =0 were computed using a likelihood ratio test. To
account for population stratification, 20 PCs were always
included as fixed effects. Consistent with previous research
(ENCODE Project Consortium, 2012; J. Yang et al., 2010),
we observed strong evidence for cis‐hg2 on many genes
(significantly non‐zero for 1,355 genes).

We then constructed linear genetic predictors of gene
expression for these genes. We performed five models:
Bayesian Sparse Linear Mixed model, Best Linear Unbiased
Predictor model, Elastic‐net regression (with mixing para-
meter of 0.5), LASSO regression and Single best eQTL
model. We used a fivefold cross‐validation strategy to vali-
date each model internally. Only genes with good model
performance, corresponding to a prediction r2 value (the
square of the correlation between predicted and observed
expression) of at least 1% (0.10 correlation) in at least one of
the five models, were included in subsequent TWAS ana-
lyses. The weights were chosen from the best performed
model out of the five models. We adopted this additional
filter to improve the interpretability and specificity of re-
sults: significant TWAS results based on models with little
or no predictive ability likely result from pleiotropy or
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colocalization, not the effect of modeled gene's expression
levels. This additional filter narrowed the number of can-
didate genes to 901.

2.4 | Transcriptome‐wide association
study (TWAS) analyses

Using the functional weights of those 901 genes and
summary level GWAS data, we assessed the association
between predicted gene expression and breast cancer risk.
We performed summary‐based imputation using the ImpG‐
Summary algorithm (Pasaniuc et al., 2014). Briefly, let Z be a
vector of standardized association statistics (z scores) of SNPs
for a trait at a given cis locus, Σs s, be the LD matrix from
reference genotype data and letW w w w w= ( … )j1 2 3 be the
weights from the expression prediction model precompiled
using the reference panel. Under the null hypothesis that
none of the SNPs with wi ≠ 0 is associated with disease, the
test statistic wz w w/( Σ )′s s,

1/2 follows a normal distribution
with mean=0 and variance= 1. To account for finite sample
size and instances where Σs s, was not invertible, we
adjusted the diagonal of the matrix using a technique similar
to ridge regression with λ=0.1.

2.5 | Case‐only TWAS

To assess whether genetically predicted expression was
differentially associated with ER+ and ER− breast cancer,
we applied the TWAS procedure described above to the Z
statistics from the BCAC case‐only analysis. Following ar-
guments in Barfield et al. (2018) the standard TWAS statistic
applied to a case‐only GWAS results tests hypothesis
H β β: − = 0.0 2 1 This is similar to a conventional multi-
nomial logistic model for subtype‐specific breast cancer risk,
with expression log odds ratio β2 for ER− disease and β1 for
ER+ disease, under which scenario, the expression log odds
ratio comparing ER− to ER+ cases is β β−2 1.

2.6 | Conditional analyses

Colocalization makes the interpretation of TWAS hits chal-
lenging (Mancuso et al., 2019; Wainberg et al., 2019). In
addition to the main TWAS analysis, we also performed
conditional and joint (COJO) multiple‐SNP analysis at each
TWAS significant gene location to distinguish colocalization,
and to identify gene(s) independently responsible for the
statistical association at each locus. COJO approximates the
results of a joint conditional analysis including predicted
expression levels from multiple proximal genes. The original
COJO approach was designed to assess the association ofT
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individual SNPs with a phenotype; we used an extension that
jointly models the associations between multiple linear
combinations of individual SNPs (Gusev et al., 2016). We
conducted two types of COJO: (a) For regions in which
multiple associated features were identified (within 500 kb of
each other, i.e., colocalization), we jointly modeled these
significant TWAS genes to determine the strongest associated
gene (or infer independent signals); (b) To provide in-
formation on whether the TWAS gene was responsible for
the observed SNP‐trait association, we also evaluated whe-
ther the GWAS‐identified index SNPs remained significant
after conditioning on the genes within the same region.

3 | RESULTS

3.1 | Breast cancer TWAS

We selected 12,696 transcripts from the 67 GTEx
breast tissue samples of European‐ancestry women
that passed quality control. Based on GCTA‐REML
analysis, breast‐tissue expression levels for 1,355 of
these genes were heritable (p value for cis‐hg2 < .01).
We then built linear predictors for these heritable
genes and estimated prediction r2 using fivefold
cross‐validation. A total of 454 genes failed our
cross‐validation r2 requirement (r2 > .01), and we
performed TWAS on the remaining 901 genes. We
defined statistical significance for TWAS results as a
marginal p < 5.5 × 10−5 (Bonferroni correction con-
trolling the familywise error rate at ≤0.05 for the
901 genes).

First, to compare with previous GWAS findings and to
demonstrate the validity of our results, we performed
TWAS analysis in overall breast cancer. We identified
30 genes in 18 cytoband regions associated with breast

cancer risk (Table 1). Of these regions, 11 (containing
21 genes) were previously reported breast cancer sus-
ceptibility loci (harboring one or more GWAS‐significant
SNP). Five genes in the remaining seven regions were
previously reported in TWAS or EUGENE analyses
(LINC00886, CTD‐2323K18.1, MAN2C1, NUP107, and
CPNE1), while the remaining four genes in these regions
were novel (MAEA, GDI2, ULK3, and HSD17B1P1).
NUP107 and CPNE1 did not pass a stringent Bonferroni
significance threshold in Wu et al. (2018) but passed a less‐
stringent false discovery rate threshold.

We also carried out analyses focusing on breast
cancer subtypes. We found 20 genes associated
with ER+ breast cancer, and six genes associated with
ER− breast cancer (p < .05/901 = 5.5 × 10−5; Table 1).
In our results, all genes associated with ER− disease
were also associated with ER+ disease, as well as with
overall breast cancer risk. Using a more stringent
threshold on the strength of the genetic predictor for
expression (cross‐validation r2 > .1; 383 genes passed
this threshold), we found four TWAS significant
(p < .05/383 = 1.3 × 10−4) genes for ER− disease,
14 genes for ER+ disease, and 19 genes for overall
breast cancer (18 out of 19 genes are included in
Table 1 except for one gene, CTD/3110H11.1). As
before, these gene sets were nested within each other.

3.2 | Difference of TWAS signal across
breast cancer subtypes

We tested whether the imputed gene expression‐breast
cancer associations differed by subtype using GWAS
summary statistics from a case‐only analysis, which
specifically compared ER+ with ER− breast cancer pa-
tients (see Section 2 for details), scanning through

FIGURE 1 Scatter plot comparing the
transcriptome‐wide association study z

scores in ER+ and ER− patients
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901 eligible genes. Two genes, HIST2H2BA and STXBP4,
showed significant associations (p< .05/901) with ER
status among cases (Figure 1). These two genes were
associated with ER+ breast cancer but not associated
with ER− breast cancer.

3.3 | GWAS signal conditioning on
TWAS gene expression

As shown in Table 2, 21 (of 30) TWAS‐significant
genes were located near GWAS signals. To examine

whether the observed GWAS signal within the gene
region could be explained by the expression of that
gene, we performed additional analyses conditioning
SNP‐cancer associations on the predicted expression
of that particular significant TWAS gene (See
Section 2 and Figure S1, for details). We found that for
most regions, GWAS SNPs were no longer associated
with the risk of breast cancer once conditioned on the
expression of TWAS gene in the region: 15 of 21 genes
had no SNPs with a conditional GWAS p value smaller
than the genome‐wide significant threshold
(5 × 10−8). Thus, there were six genes for which the

TABLE 2 Summary of conditional analysis at known breast cancer risk region

Gene

Before conditional analysis After conditional analysis

Number
of SNPs

Number of
significant
SNPs

Index
GWAS
SNP p
value

Number of
significant
SNPs Index SNP

Smallest
conditional p
values Ratioa

Magnitude of
change in the
minimum p
value before and
after COJO

ALS2CR12 480 12 8.2E−17 1 rs3769823 6.40E−09 0.92 1.28E−08

ATG10 619 24 6.9E−13 0 rs891159 1.20E−07 1.00 5.75E−06

ATP6AP1L 581 24 6.9E−13 0 rs891159 1.70E−07 1.00 4.06E−06

CASP8 493 12 8.2E−17 6 rs3769823 3.90E−12 0.50 2.10E−05

CRHR1 229 13 1.5E−10 0 rs17763086 1.40E−05 1.00 1.07E−05

CRHR1‐IT1 230 13 1.5E−10 0 rs17763086 9.90E−05 1.00 1.52E−06

HIST2H2BA 202 19 3.5E−52 1 rs11249433 7.40E−24 0.95 4.73E−29

KANSL1‐AS1 34 13 1.5E−10 0 rs17763086 1.60E−01 1.00 9.38E−10

L3MBTL3 724 13 1.7E−12 0 rs6569648 1.40E−03 1.00 1.21E−09

LRRC37A 285 13 1.5E−10 0 rs17763086 4.60E−05 1.00 3.26E−06

LRRC37A4P 285 13 1.5E−10 0 rs17763086 4.60E−05 1.00 3.26E−06

MRPL23‐AS1 557 36 2.4E−33 18 rs569550 1.20E−29 0.50 2.00E−04

NUDT17 112 17 1.5E−10 0 rs36107432 3.90E−05 1.00 3.85E−06

RP11‐15A1.7 594 32 1E−16 0 rs10426528 4.60E−07 1.00 2.17E−10

RP11‐250B2.5 503 8 2.7E−09 0 rs9343989 1.00E−03 1.00 2.70E−06

RP11‐554A11.9 532 36 2.8E−44 33 rs680618 2.80E−44 0.08 1.00E+00

RP11‐73O6.3 665 13 1.7E−12 0 rs6569648 1.70E−03 1.00 1.00E−09

STXBP4 687 46 2E−28 0 rs244353 2.10E−04 1.00 9.52E−25

ZNF155 597 32 1E−16 5 rs10426528 2.00E−09 0.84 5.00E−08

ZNF404 551 32 1E−16 0 rs10426528 5.30E−07 1.00 1.89E−10

LRRC37A2 152 2 2E−08 0 rs199498 1.80E−02 1.00 1.11E−06

Abbreviations: COJO, conditional and joint; GWAS, genome‐wide association studies; SNP, single nucleotide polymorphisms.
aProportion of marginally significant SNPs that are not significant in conditional analyses. Analysis was performed using GWAS summary statistics of ER+ subtypes. The
difference between marginal SNP tests for association (GWAS p values) and the SNP p values conditional on significant TWAS genes provides some evidence regarding
the independence of the TWAS and single‐SNP association signals. The number and proportion of SNPs that are genome‐wide significant before and after conditioning
on a TWAS‐significant gene summarizes the degree single‐SNP associations are dependent on (or independent of) the TWAS association.
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GWAS SNP remained significantly associated with
breast cancer risk at the genome‐wide threshold
(5 × 10−8) after conditioning on TWAS gene expres-
sion. The region containing HIST2H2BA had only one
genome‐wide significant SNP remaining, and the re-
gion containing ZNF155 and ZNF404 had five
genome‐wide significant SNPs remaining, indicating
that the expression of identified genes might explain
some but not all of the SNP‐breast cancer associations
in these regions. For CASP8 and MRPL23‐AS1 regions,
half of the GWAS hits remained genome‐wide sig-
nificant, and for the RP11‐554A11.9 region, 33 out of
36 GWAS SNPs remained (Figures 2 and S1). These
results suggest that the genetic association between
breast cancer risk and those regions may not be
mediated by transcriptional regulation of the genes on
which we conditioned.

3.4 | Mutually adjusting for
TWAS‐significant genes in the
same region

As shown in Table 3, we identified six regions with
more than one TWAS‐significant gene: 2q33 (CASP8,
ALS2CR12), 5q14 (ATG10, ATP6AP1L), 6q22 (RP11‐73O6.3,
L3MBTL3), 15q24 (ULK3, MAN2C1, CTD‐2323K18.1),
17q21 (LRRC37A4p, CRHR1‐IT1, CRHR1, KANSL1‐AS1,
LRRC37A, LRRC37A2), and 19q13 (ZNF404, ZNF155,
RP11‐15A1.7). After mutually conditioning on the predicted
expression of all significant genes in the same regions, ten
genes remained nominally significant (p< 0.05). For some
regions, only one gene remained, that is ATG10 for 5q14,
L3MBTL3 for 6q22 and CRHR1‐IT1 for 17q21 (Figures 3a
and S2); while for other regions, multiple genes remained
significant, including CASP8 and ALS2CR12 for 2q33,

FIGURE 2 Conditional and joint analysis (COJO) for genes near a strong breast cancer GWAS hit. (a) COJO results adjusting for
predicted expression of ALS2CR12. After conditioning on ALS2CR12, almost all original significant GWAS signals (grey dots) disappear
(blue dots). (b) COJO results adjusting for the predicted expression of CASP8. After conditioning on CASP8, some of the original GWAS
significant signals (grey dots) remains (blue dots)
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ULK3 and MAN2C1 for 15q24, and ZNF404, ZNF155, and
RP11‐15A1.7 for 19q13 (Figures 3b and S2).

4 | DISCUSSION

We conducted a TWAS analysis using GTEx mammary
tissue gene expression data and GWAS summary data
from the largest meta‐analysis for breast cancer risk.
We assessed associations between overall breast cancer
risk and ER+ versus ER− disease. We found 30 genes
significantly associated with overall breast cancer risk,
20 genes associated with the ER+ subtype, and six genes
with the ER− subtype.

These results are consistent with previous reports from
TWAS or similar gene‐based approaches, which used
various algorithms to build gene expression models. For
example, of the 30 genes that we found significantly re-
lated to overall breast cancer risk, 23 were also significant
in Wu et al. (2018) with very similar test statistics (corre-
lation = 0.96 for the z scores between our and Wu's re-
sults), and six were significant in Ferreira et al. (2019).
One of the six genes we classified as significantly

associated with ER− breast cancer was also found sig-
nificantly associated with ER− breast cancer in Ferreira
et al. (2019). Among these studies, the approach taken by
Wu et al. was the most similar to ours. Only seven of the
30 genes that we identified were not identified by Wu et al.
(2018), probably due to different cis‐SNP selection criteria
and different candidate genes selected for testing. We de-
fined cis‐SNPs using a 500KB window around the gene
boundary and included only candidate genes with a sig-
nificant heritability, while Wu et al. used a 2MB
cis‐SNP window and included genes with a prediction
performance of at least 0.01 without heritability filtering.
For genes whose expression could not be predicted well,
Wu et al. built models using only SNPs located in promoter
or enhancer regions. Despite these methodological differ-
ences, the two TWAS results were highly concordant.
However, we did not replicate any of the findings in Hoff-
man et al. (2017) and Gao et al. (2017), which may reflect
the smaller sample size of the breast cancer GWAS used in
their analyses (3,370 cases and 19,717 controls in Hoffman
et al.; 10,597 overall breast cancer cases, 3,879 ER− cases
and 11,358 controls in Gao et al.). Specifically, three of the
previously reported genes were excluded by our stringent

TABLE 3 Conditional and joint analysis of gene region with multiple TWAS significant genes

Regiona Gene (colocalized)

Marginal TWAS COJO

Z score p Value Z score p Value

2q33 ALS2CR12 6.7 2.15E−11 4.6 3.70E−06

CASP8 −5.22 1.76E−07 −2 5.00E−02

5q14 ATG10 −6.37 1.85E−10 −6.37 1.85E−10

ATP6AP1L −5.18 2.25E−07 −0.85 0.4

6q22 RP11‐73O6.3 −6.92 4.46E−12 0.18 0.86

L3MBTL3 −7.46 8.45E−14 −7.46 8.45E−14

15q24 ULK3 −4.11 3.87E−05 −4.1 3.90E−05

MAN2C1 −4.95 7.37E−07 −5 7.40E−07

CTD‐2323K18.1 −4.95 7.49E−07 −1.7 0.083

17q21 LRRC37A4P 6.29 3.12E−10 0.25 0.8

CRHR1‐IT1 −6.3 2.91E−10 −6.3 2.91E−10

CRHR1 −5.46 4.84E−08 −0.28 0.78

KANSL1‐AS1 −6.28 3.37E−10 −0.04 0.97

LRRC37A −5.37 7.89E−08 1.83 0.07

LRRC37A2 −5.12 3.07E−07 1.81 0.07

19q13 ZNF404 7.35 2.04E−13 3.5 0.001

ZNF155 5.75 8.81E−09 −2 0.042

RP11‐15A1.7 6.81 9.67E−12 2.8 0.005

Abbreviations: COJO, conditional and joint; TWAS, transcriptome‐wide association studies.
aBolded genes remain significant in conditional analyses. Analysis was performed using GWAS summary statistics of ER+ subtypes. Our primary goal in these
analyses is to establish whether any of the marginally significant TWAS genes remains significant after conditioning for the most significant gene in the region;
sincesince all of the regions with multiple significant genes contain 2–3 significant genes, using a conditional p value threshold of .05 is a reasonable threshold
for identifying independent signals.
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QC procedure (DHODH, ANKLE1 from Hoffman et al. and
TP53INP2 from Gao et al. were not heritable in our ana-
lysis) and one was not significant in our analysis (RCCD1
from Hoffman et al. p= .0032 for overall breast cancer).
Both Hoffman et al. and Gao et al. used GWAS results
based on a mixed population of European, African, and
Asian ancestry (which shared a small set of European
samples with our GWAS: N< 5,700 individuals from
CGEMS and the BPC3, less than 2% of our GWAS sample).
They also used different tissues to build their prediction
weights: overall breast tissue (men and women combined,
all ethnicities) and whole blood tissue (men and women
combined, European ancestry).

Of the 30 genes associated with breast cancer risk in
our study, 21 fell into known GWAS regions whereas
nine were not close to any known GWAS hit and were,
therefore, considered novel. Of these nine genes, five
were identified and discussed in Wu et al. (2018) or
Ferreira et al. (2019). The four genes uniquely identified

in the present study were GDI2, HSD17B1P1, MAEA, and
ULK3, several of which have been reported to play a role
in breast tumorigenesis or related biological processes.
For example, the expression of GDI2 has been linked
with breast cancer through its contribution to enhanced
epidermal growth factor receptor endocytosis (EGFR;
de Graauw et al., 2014). HSD17B1P1 is a pseudo‐gene
related to HSD17, which participates in steroid hormone
biosynthesis, metabolism, and signaling pathways po-
tentially related to breast cancer risk (Jakubowska
et al., 2010). These findings lend support to our results
and suggested that further investigation into the roles of
the novel genes identified for breast cancer is required.

We performed several conditional analyses not re-
ported in previous TWAS. We examined the local GWAS
signals conditioning on the expression of TWAS genes, to
provide a measure of how well the expression level of
identified TWAS genes explained the local GWAS signals.
For many loci, these genes explained a large proportion

FIGURE 3 COJO for regions with multiple TWAS associations. For each plot, the top panel shows all genes in the locus. After COJO
analysis, the marginally associated genes are highlighted in blue, while those that remain jointly significant are highlighted in green (in this
case, L3MBTL3, CASP8, and ALS2C12). The bottom panel shows a Manhattan plot of the GWAS signals before (gray) and after (blue)
conditioning on the significant (green) genes. (a) COJO results for 6q22 (only one gene remains significant after COJO). (b) COJO results for
2q33 (an example of multiple genes remaining jointly remain significant after COJO). COJO, conditional and joint analysis; GWAS, genome‐
wide association studies; TWAS, transcriptome‐wide association studies
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of the local GWAS signals and were thus candidates for
downstream experimental validation. We also identified
candidate genes driving the statistical associations in re-
gions with more than one TWAS gene (usually also re-
gions with known GWAS risk loci) by jointly modeling
multiple nominally significant genes. For example, pre-
vious studies have suggested that polymorphisms in
CASP8 are associated with breast cancer risk (Cox
et al., 2007), whereas a recent paper has shown that the
most significant signal in this region is for the imputed
intronic SNP rs1830298 in ALS2CR12 (telomeric to
CASP8; Lin et al., 2015). Our results provide clarification
on whether CASP8 or ALS2CR12 expression were more
strongly associated with breast cancer risk, since both
genes remained significantly associated with breast can-
cer risk after conditioning on the expression of the other
(the conditional p value for ALS2CR12 was 3.70 × 10−6,
whereas the conditional p value for CASP8 was .05).
Eleven of the 12 GWAS hits disappeared after adjusting
for the expression of ALS2CR12, while half of the GWAS
hits remained after adjusting for the expression of
CASP8. Therefore, we believe that ALS2CR12 SNPs have
a stronger effect and are associated with breast cancer
through ALS2CR12 expression, while CASP8 remains an
additional independent hit, consistent with the latest fine‐
mapping results (Lin et al., 2015).

Because the genes found to be associated with ER−
disease were also associated with ER+ disease, and these,
in turn, were associated with overall breast cancer risk, it
is difficult to conclude whether the differences in gene
sets are due to distinct mechanisms underlying breast
cancer subtypes or due to a lack of statistical power be-
cause of the smaller disease subtype sample sizes. To
address this question, we further incorporated a case‐only
TWAS comparing ER+ versus ER− breast cancer. We
identified two genes, STXBP4 and HIST2H2BA, asso-
ciated with ER status, which were significantly associated
only with ER+ but not ER− breast cancer. Previous
studies supported the link between rs6504950 (a SNP in
STXBP4) and overall breast cancer risk (Antoniou
et al., 2010; Warren Andersen et al., 2013). It has also
been hypothesized that the risk allele for the two top
breast cancer candidate SNPs, rs2787486 and rs244353,
affected gene expression of STXBP4 (Darabi et al., 2016)
and CD4 memory cells (Hnisz et al., 2013). One potential
explanation for the association between STXBP4 and
breast cancer risk is that it encodes syntaxin binding
protein 4, a scaffold protein. In addition, STXBP4 func-
tions to stabilize and degrade TP63 isoform (a member of
the TP53 tumor suppressor protein family), a biologically
plausible candidate cancer susceptibility gene. Similarly,
SNPs rs2580520 and rs11249433 upstream of HIST2H2BA
have been identified as breast cancer susceptibility alleles

in a previous GWAS (Bogdanova, Helbig, & Dörk, 2013).
Our results suggest that functional and pathway analyses
targeting these two genes are likely to shed new light on
the differences in tumorigenesis and progression me-
chanisms between ER+ and ER− patients.

By building gene expression linear predictors in GTEx
breast tissue, our analysis offers a tissue‐specific model of
gene expression. The gene regulatory mechanisms in fe-
male breast tissue are arguably the most suitable for
studying breast cancer. Moreover, by restricting our re-
ference population to women of European ancestry, ra-
ther than mixing genders and ancestries, the resulting
gene expression model was a better match to our breast
cancer GWAS summary statistics. By using the largest
GWAS meta‐analysis currently available, we greatly im-
proved the power compared with previous work by
Hoffman et al. (2017) and Gao et al. (2017). Finally, by
using case‐only GWAS summary statistics, we provided
insights into genes associated with breast cancer subtype
specific risk compared with Wu et al. (2018) and Ferreira
et al. (2019).

Similar to previous work by Wu et al. (2018) and
Hoffman et al. (2017), our analyses focused on genetic
tools trained using expression from breast tissue, chosen
because of its direct relevance to breast carcinogenesis.
However, given the relatively small sample size in the
breast tissue eQTL panel, this choice limited both our
power to detect genes with cis‐heritable expression and
the precision of estimated genetic predictors for heritable
transcripts. The genetic regulation of expression is con-
stant across tissues for many genes, suggesting that
considering other tissues with larger eQTL sample sizes
or combining eQTL evidence across tissues may improve
power. In addition, other tissues may be relevant for
breast cancer development. For example, considering
that obesity and hormonal signaling have been linked to
breast cancer risk (Bertolini, 2013), gene expression in
adipose tissue and brain tissue may have parallel in-
volvement with breast cancer etiology. We are currently
developing methods for cross‐tissue TWAS, using sCCA
(sparse canonical correlation analysis) to build features
that combine gene expression values across tissues that
share similar genetic regulation mechanisms, while al-
lowing tissues with different regulation patterns to con-
tribute to different features (Feng, Pasaniuc, Major, &
Kraft, 2018).

In conclusion, we have identified new breast cancer
target genes both for functional experiments and as
causal gene candidates in the significant TWAS gene
regions. We have also identified associations between
gene expression and breast cancer risk specific to disease
subtypes, where two novel genes have been found
specifically associated with ER+ breast cancer risk.
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This analytic strategy warrants application in studies
aimed at defining the genomic architecture of cancers
other than breast cancer.
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