19 research outputs found

    Predicting the Loop Current dynamics combining altimetry and deep flow measurements through the Yucatan Channel

    Get PDF
    The Loop Current is the main mesoscale feature of the Gulf of Mexico oceanic circulation. With peak velocities above 1.5 m s–1, the Loop Current and its mesoscale eddies are of interest to fisheries, hurricane prediction and of special concern for the security of oil rig operations in the Gulf of Mexico, and therefore understanding their predictability is not only of scientific interest but also a major environmental security issue. Combining altimetric data and an eddy detection algorithm with 8 years of deep flow measurements through the Yucatan Channel, we developed a predictive model for the Loop Current extension in the following month that explains 74% of its variability. We also show that 4 clusters of velocity anomalies in the Yucatan Channel represent the Loop Current dynamics. A dipole with positive and negative anomalies towards the western side of the Channel represents the growing and retracted phases respectively, and two tripole shape clusters represent the transition phases, the one with negative anomalies in the center associated with 50% of the eddy separation events. The transition between these clusters is not equally probable, therefore adding predictability. Finally, we show that eddy separation probability begins when the Loop Current extends over 1800 km (~27.2°N), and over 2200 km of extension, eddy detachment and reattachment is more frequent than separation. These results represent a step forward towards having the best possible operational Loop Current forecast in the near future, incorporating near real-time data transmission of deep flow measurements and high resolution altimetric data

    Altimetry for the future: Building on 25 years of progress

    Get PDF
    In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the ‘‘Green” Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instruments’ development and satellite missions’ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion

    Altimetry for the future: building on 25 years of progress

    Get PDF
    In 2018 we celebrated 25 years of development of radar altimetry, and the progress achieved by this methodology in the fields of global and coastal oceanography, hydrology, geodesy and cryospheric sciences. Many symbolic major events have celebrated these developments, e.g., in Venice, Italy, the 15th (2006) and 20th (2012) years of progress and more recently, in 2018, in Ponta Delgada, Portugal, 25 Years of Progress in Radar Altimetry. On this latter occasion it was decided to collect contributions of scientists, engineers and managers involved in the worldwide altimetry community to depict the state of altimetry and propose recommendations for the altimetry of the future. This paper summarizes contributions and recommendations that were collected and provides guidance for future mission design, research activities, and sustainable operational radar altimetry data exploitation. Recommendations provided are fundamental for optimizing further scientific and operational advances of oceanographic observations by altimetry, including requirements for spatial and temporal resolution of altimetric measurements, their accuracy and continuity. There are also new challenges and new openings mentioned in the paper that are particularly crucial for observations at higher latitudes, for coastal oceanography, for cryospheric studies and for hydrology. The paper starts with a general introduction followed by a section on Earth System Science including Ocean Dynamics, Sea Level, the Coastal Ocean, Hydrology, the Cryosphere and Polar Oceans and the “Green” Ocean, extending the frontier from biogeochemistry to marine ecology. Applications are described in a subsequent section, which covers Operational Oceanography, Weather, Hurricane Wave and Wind Forecasting, Climate projection. Instruments’ development and satellite missions’ evolutions are described in a fourth section. A fifth section covers the key observations that altimeters provide and their potential complements, from other Earth observation measurements to in situ data. Section 6 identifies the data and methods and provides some accuracy and resolution requirements for the wet tropospheric correction, the orbit and other geodetic requirements, the Mean Sea Surface, Geoid and Mean Dynamic Topography, Calibration and Validation, data accuracy, data access and handling (including the DUACS system). Section 7 brings a transversal view on scales, integration, artificial intelligence, and capacity building (education and training). Section 8 reviews the programmatic issues followed by a conclusion

    Formation and Transport of the South Atlantic Subtropical Mode Water in Eddy-Permitting Observations

    No full text
    International audienceWe present in this study a detecting algorithm that enables to identify both the ocean surface mixed layer depth (MLD) and mode water from the Argo profiling data. This algorithm proposes a detection based on the calculation of the first and second derivatives for each temperature (or density) profile. Low gradients reveal segments of water mass homogeneity, while extreme values of second derivatives indicate the precise depths at which the gradients sharply change. Specifically applied to detect the South Atlantic Subtropical Mode Water (SASTMW), this algorithm leads to a redefinition of the three mode water types discussed in Sato and Polito (2014; https://doi.org/10.1002/2013JC009438) as well as new insights into the origins of these water masses and their dynamics. In particular, we point out that only one of the SASTMW varieties originates from the Brazil-Malvinas Confluence in the western boundary, whereas the other two are related to the Agulhas Leakage that shapes the Indo-Atlantic water mass exchanges. As both regions of the SASTMW formation are characterized by intense eddy kinetic energy, the role of mesoscale eddies in the SASTMW formation and transport is also investigated by co-locating Argo profiles with eddies objectively identified from satellite altimetry maps. It suggests that anticyclonic eddies correspond to a larger number and thicker layers of SASTMW than their cyclonic counterparts. In the Cape Basin, where mode waters are found correlated with the main paths of Agulhas Rings, a potential route of subduction is also proposed

    Evolution of the thermohaline structure of one Agulhas Ring reconstructed from satellite altimetry and Argo 2 floats

    No full text
    The transfer of Indian Ocean thermocline and intermediate waters into the South Atlantic via the Agulhas leakage is generally believed to be primarily accomplished through mesoscale eddy processes, essentially anticyclones known as Agulhas Rings. Here we take advantage of a recent eddy tracking algorithm and Argo float profiles to study the evolution and the thermohaline structure of one of these eddies over the course of 1.5 years (May 2013-November 2014). We found that during this period the ring evolved according to two different phases: During the first one, taking place in winter, the mixing layer in the eddy deepened significantly. During the second phase, the eddy subsided below the upper warmer layer of the South Atlantic subtropical gyre while propagating west. The separation of this eddy from the sea surface could explain the decrease in its surface signature in satellite altimetry maps, suggesting that such changes are not due to eddy dissipation processes. It is a very large eddy (7.1×1013 m3 in volume), extending, after subduction, from a depth of 200-1200 m and characterized by two mode water cores. The two mode water cores represent the largest eddy heat and salt anomalies when compared with the surrounding. In terms of its impact over one year, the north-westward propagation of this long-lived anticyclone induces a transport of 2.2 Sv of water, 0.008 PW of heat, and 2.2×105 kg s−1 of salt. These results confirm that Agulhas Rings play a very important role in the Indo-Atlantic interocean exchange of heat and salt

    Impact of upstream variability on the Loop Current dynamics in numerical simulations of the Gulf of Mexico

    No full text
    The Loop Current (LC), which is the main mesoscale dynamic feature of the Gulf of Mexico (GoM), has a major impact on the circulation and its variability in the interior Gulf. The LC is a highly variable and dynamic feature. It changes shape from a short jet connecting the two openings of the GoM in an almost straight line ("retracted phase") to a long loop invading most of the eastern part of the GoM ("extended phase"). When it is in the extended phase, it can shed large anticyclonic eddies, called Loop Current Eddies, which then migrate to the western GoM. In this study, the processes controlling the LC dynamics are investigated using two multi-decadal simulations of the Gulf of Mexico HYbrid Coordinate Ocean Model differing in their open boundary conditions (BCs) and altimetry-derived gridded fields. The LC in the simulation with BCs derived from monthly climatology state variables frequently remains in its retracted phase significantly longer than observed. In contrast, the duration of the retracted phase is notably shorter in the simulation in which the BCs have realistic daily variability. By examining the flow properties through the Yucatan Channel from which the LC originates, we find that increased intensity of this current and a westward shift of the mean core is associated with the LC transitions from the retracted to the extended phase. This transition is accompanied by an increase of both cyclonicity of the flow in the west and anticyclonicity in the east of the core of this jet. Moreover, the number of anticyclonic eddies entering in the GoM through the Yucatan Channel is significantly higher when the LC extends in the GoM. Consequently, this study demonstrates the importance of realistic flow variability at the lateral boundaries for accurate simulation of the LC system in a model, and reveals characteristics of the upstream flow associated with different LC behavior that can potentially aid in forecasting the LC system

    Combining an Eddy Detection Algorithm with In-Situ Measurements to Study North Brazil Current Rings

    No full text
    North Brazil Current (NBC) rings are believed to play a key role in the Atlantic Ocean circulation and climate. Here, we use a new collection of high-resolution in-situ observations acquired during the EUREC4A-OA field experiment together with satellite altimetry to define, with unprecedented detail, the structure and evolution of these eddies. In-situ observations reveal a more complex structure than previously documented. In particular, we highlight a measurable impact of the Amazon outflow in creating a barrier layer over a large portion of the eddies. We show that this unprecedented data set allows us to estimate the accuracy of satellite altimetry gridded fields. The geostrophic velocities derived from satellite altimetry turn out to be considerably lower (up to 50% in amplitude) than the values measured by current meters. However, eddy properties as detected by TOEddies, a newly developed algorithm show to be relatively precise. For example, the eddy center and maximum azimuthal velocity contour fall within 25 ± 5 km and 16 ± 9 km, respectively, from the in-situ observed values. We apply TOEddies to 27 years of satellite altimetry to investigate the generic NBC rings behavior. We found a mean generation rate of 4.5 ± 1.1 rings per year, and a strong seasonal cycle in all eddy properties

    Shelf Water Export at the Brazil-Malvinas Confluence Evidenced From Combined in situ and Satellite Observations

    Get PDF
    International audienceThe Brazil-Malvinas Confluence (BMC) is the region where opposing and intense western boundary currents meet along the Southwestern Atlantic slope at about 38°S, generating one of the most energetic mesoscale regions of the global ocean. Based on shipborne observations acquired within the Uruguayan Economic Exclusive Zone (EEZ), combined with satellite data and an eddy tracking algorithm, we analyze the cross-shelf exchanges during May 2016, when the BMC was in an anomalous northern position. Two types of shelf water export were observed triggered by mesoscale dynamics: one was the export of shallow Rio de la Plata Plume waters driven off-shelf by the retroflection of the Brazil Current. This export formed a 70 km wide, 20 m deep filament that propagated offshore at 0.3 m s –1 , with a transport of 0.42 Sv. It lasted about 10 days before being mixed with ambient Confluence waters by strong winds. An additional type of off-shelf transport consisted of a subsurface layer of Subantarctic Shelf Waters (SASW) about 60 m thick that subducted at the BMC reaching 130 m deep and transporting 0.91 ± 0.91 Sv. We show that geostrophic currents derived from satellite altimetry over the slope can be useful to track this subsurface off-shelf export as they are significantly correlated with absolute velocity measurements at this depth. Argo temperature and salinity profiles show evidence of these two types of shelf water export occurring between the BMC front and the separation of the Brazil Current from the shelf-break, suggesting this is a relatively frequent phenomenon, in agreement with previous observations
    corecore