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Key Points 

 Seven astronomically-forced open-ocean Braarudosphaera acmes occurred during the 

mid-Oligocene in the subtropical South Atlantic Ocean 

 The exact paleoecologic, paleoceanographic, and paleoclimatic significance of the 

mid-Oligocene Braarudosphaera acmes remains unclear  

 Recurrent hyperstratification can provide a virtual sea-floor, which may be required in 

Braarudosphaera‟s life-cycle 

 

Abstract 

Pelagic sediments from the subtropical South Atlantic Ocean contain geographically 

extensive Oligocene ooze and chalk layers that consist almost entirely of the calcareous 

nannofossil Braarudosphaera. Poor recovery and the lack of precise dating of these 

horizons in previous studies has limited the understanding of the number of acmes, 

their timing and durations, and therefore their likely cause. Here we present a high-

resolution, astronomically tuned stratigraphy of Braarudosphaera oozes (29.5–27.9 Ma) 

from Ocean Drilling Program Site 1264 in the southeastern Atlantic Ocean. We identify 

seven episodes with highly abundant Braarudosphaera. Four of these acme events 

coincide with maxima and three with minima in the ~110-ky and 405-ky paced 

eccentricity cycles. The longest lasting acme event corresponds to a pronounced 

minimum in the ~2.4-My eccentricity cycle. In the modern ocean, Braarudosphaera 

occurrences are limited to shallow marine and neritic settings, and the calcified tests of 

Braarudosphaera probably represent a resting stage in its life cycle. Therefore, we 

hypothesize that the Oligocene acmes point to extensive and episodic (hyper)stratified 

surface water conditions, i.e., a shallowly situated pycnocline that may have served as a 

virtual sea floor, which (partially) prevented the tests from sinking in the pelagic realm. 
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We speculate that hyperstratification was either ocean-basin-wide, through the 

formation of relatively hyposaline surface waters, or eddy-contained through strong 

isopycnals at the base of eddies. Astronomical forcing of atmospheric and/or oceanic 

circulation could have triggered these conditions through either sustained rainfall over 

the open ocean and adjacent land masses or increased Agulhas Leakage. 

 

Index terms 

0473 (Paleoclimatology and paleoceanography), 1125 (Chemical and biological 

geochronology), 4910 (Astronomical forcing), 4944 (Micropaleontology), 4950 

(Paleoecology) 

 

Keywords 

Braarudosphaera acmes, astronomical forcing of atmospheric and oceanic fronts, surface-

ocean stratification, Oligocene, monsoons, eddies  

 

1. Introduction 

The recovery of mid-Oligocene (~30–27 Ma) strata from the subtropical South Atlantic 

Ocean reveals geographically extensive ooze and chalk layers that are composed of the 

calcareous nannofossil Braarudosphaera. These Braarudosphaera-rich horizons are reported 

from Deep Sea Drilling Project (DSDP) Leg 3 [Maxwell et al., 1970], Leg 40 [Bolli et al., 

1978], Leg 73 [Hsü et al., 1984] and Leg 74 [Moore et al., 1984], and more recently during 

Ocean Drilling Program (ODP) Leg 208 [Zachos et al., 2004]. They are especially well-

preserved on bathymetric highs on either side of the Tristan hotspot in areas above the 

lysocline, which currently lies at ~3800 m in the South Atlantic Ocean [Boeckel and 

Baumann, 2004]. At abyssal sites, such horizons are thinner or even absent, due to carbonate 
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dissolution below the lysocline [Peleo-Alampay et al., 1999]. In the South Atlantic, the 

Braarudosphaera layers form a belt between ~20 and 30S (Fig. 1) [Noël and Melguen, 

1978; Parker et al., 1985] that can be traced as a series of (weak) acoustic reflectors for 

thousands of kilometers across the basin [Maxwell et al., 1970]. Braarudosphaera-rich 

sediments of mid-Oligocene age are also reported from other ocean basins, for instance at 

sites in the subtropical latitudes of the North Atlantic Ocean [Parker et al., 1985] and the 

tropical and subtropical latitudes of the Indian Ocean [Roth, 1974; Siesser et al., 1992]. 

However, the abundance of braarudosphaerids in the oozes from the South Atlantic, which 

are near-monospecific, is unequaled in other ocean basins [Parker et al., 1985]. 

 

The Braarudosphaeraceae appeared in the earliest Cretaceous (ca. 140 Ma) and were 

particularly diverse and abundant in the Cretaceous and Paleogene [Bown, 2005a; Gartner, 

1996; Lamolda et al., 2005]. There are two extant species within the Braarudosphaeraceae 

and molecular phylogenetic studies place this family within the Class Prymnesiophyceae of 

the haptophyte eukaryotic algae [Takano et al., 2006]. Braarudosphaera bigelowii is the best-

known extant species and is found in neritic habitats, such as coastal/shelf settings and inland 

seas [Bukry, 1974; Hagino, 1997; Konno et al., 2007; Proto Decima et al., 1978; Takayama, 

1972; Tanaka, 1991]. Enrichments of Braarudosphaera spp. in geological records have been 

linked to environmental conditions that mimic those of the neritic realm, such as shallow 

coastal waters with water depths ≲70 m ([Martini, 1967; Takayama, 1972; Tanaka, 1991] 

see also: [Hagino et al., 2013]), hyposalinity [Bukry, 1974], eutrophism [Bartol et al., 2008; 

Cunha and Shimabukuro, 1997; Švábenická, 1999] and/or perhaps a reduced water column 

transparency. In addition, Braarudosphaera spp. have been associated with climatologic 

and/or ecologic upheavals and interpreted to be opportunistic (r-strategist), and sporadic 

bloom-forming taxa that colonize challenging or vacant niches [Bown, 2005b; Bukry, 1974; 
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Minoletti et al., 2005]. The neritic ecology of Braarudosphaera spp. is unusual for calcifying 

prymnesiophytes (coccolithophores), which are more typically adapted to open ocean 

environments.  

 

Three factors in particular have made the mid-Oligocene Braarudosphaera acmes an enigma: 

(i) the stark contrast between the restriction of modern Braarudosphaera to neritic settings, 

versus the presence of similar taxa in the pelagic realm during the mid-Oligocene (i.e., 

modern ecology versus paleoecology), (ii) the difference in surface ocean conditions of the 

modern South Atlantic Ocean (mixed, relatively hypersaline and oligotrophic) (Fig. 2) versus 

those that prevailed during mid-Oligocene (perhaps more stratified, hyposaline and 

eutrophic), which the Braarudosphaera acmes are thought to reflect (i.e., modern 

oceanography versus paleoceanography), and (iii) the unknown forcing-agents that can 

explain these ecologic and oceanographic contrasts between the present day and the 

geological past (i.e., modern climatology versus paleoclimatology) [Kelly et al., 2003; Peleo-

Alampay et al., 1999]. One key aspect currently impeding understanding of the mid-

Oligocene acmes is the absence of a detailed astrochronological framework for the 

Braarudosphaera-rich layers. Without a clear chronology, it is not possible to obtain an in-

depth understanding of the cause-and-effect relationships between astronomical climate 

forcing and the resulting paleoceanographic/paleoecologic conditions that culminated in the 

Braarudosphaera acmes. Here, we present the first continuous and high-resolution 

stratigraphy across the Braarudosphaera oozes from subtropical South Atlantic Ocean ODP 

Sites 1264 and 1265, with the aim of investigating the number, duration, timing and recurrent 

nature of the acmes they represent.  
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2. Materials and methods  

2.1. Site descriptions 

Six sites were drilled along a depth transect on the Walvis Ridge during ODP Leg 208 

(southeastern Atlantic Ocean) (Fig. 1). All but the two deepest sites recovered Oligocene 

Braarudosphaera-rich strata (Fig. 3) [Zachos et al., 2004]. For this study we selected Sites 

1264 (2505 meters below sea level (mbsl), ~2100 paleo-mbsl at 28.5 Ma, 28°31.955'S, 

2°50.730'E) and 1265 (3059 mbsl, ~2550 paleo-mbsl at 28.5 Ma, 28°50.101'S, 2°38.354'E) 

that recovered relatively expanded, carbonate-rich Oligocene intervals (Fig. 1) [Zachos et al., 

2004]. The sediments are typical for a low-to-mid latitude pelagic setting and are dominated 

by biogenic carbonates that predominantly consist of calcareous nannofossil, with a smaller 

contribution of planktic and benthic foraminiferal remains and an almost complete absence of 

siliceous microfossils [Zachos et al., 2004]. Magnetochron C11 was transposed from Site 

1266 (3798 mbsl, ~3250 paleo-mbsl at 28.5 Ma, 28°32.550'S, 2°20.610'E) to Site 1264 using 

a detailed correlation between sites [Bowles, 2006; Liebrand et al., 2016]. We made a small 

correction in the adjusted revised meters composite depth (armcd) for an off-splice interval of 

Core 1264B-29H, to better align it with the revised meters composite depth (rmcd) of the 

same interval identified on-splice in Core 1264A-29H. One mapping-pair for Core 1264B-

29H (301.60 rmcd to 301.51 armcd) was replaced with two new mapping-pairs (302.06 rmcd 

to 301.46 armcd and 302.26 rmcd to 301.95 armcd). The composite depth model on the rmcd 

scale, the splice tie-points between Holes 1264A and 1264B, and the age model for Site 1264 

remain unaltered from Liebrand et al., [2016].  
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2.2. Sediment properties and stable isotopes 

For stratigraphic and paleoceanographic context, we use previously published sediment 

property records (i.e., water content, CaCO3 content, size fraction weights) and benthic 

foraminiferal stable oxygen (
18

O) and carbon (
13

C) isotope records [Liebrand et al., 2011; 

Liebrand et al., 2016], combined with newly generated bulk sediment 
18

O and 
13

C records 

and nannofossil abundance records. The CaCO3 content was estimated from high-resolution 

x-ray fluorescence (XRF) core scanning data using the natural logarithm of calcium over iron 

counts, calibrated to shipboard coulometric CaCO3 measurements ([Zachos et al., 2004]; see 

[Liebrand et al., 2016] for details). Bulk 
18

O and 
13

C isotope data were measured at ~5 cm 

resolution across the entire Site 1264 study interval (286–318 armcd) (Fig. 4). Bulk isotopes 

were measured at Utrecht University using a Thermo Finnigan GasBench-II carbonate 

preparation device coupled to a Thermo Finnigan Delta-V mass spectrometer. Analytical 

precision was 0.08 ‰ and 0.03‰ for δ
18

O and δ
13

C, respectively. We applied a small (0.20 

‰) adjustment to the δ
18

O data that was obtained on the Delta-V to match results of duplicate 

runs of a small sample-set that was measured using a Thermo Finnigan Kiel-III automated 

preparation system coupled to a Thermo Finnigan MAT 253 mass spectrometer, also at 

Utrecht University. The ratios for each sample were drift-corrected using nine isotopic 

standard (NBS-19) measurements analyzed within each run.  

 

2.3. Calcareous nannofossils  

Smear slides of bulk sediment were made using standard preparation techniques [Bown and 

Young, 1998], and were analyzed at Chieti University with a polarizing light microscope at 

1250× magnification. Micrographs were taken with a scanning electron microscope (SEM) to 

visually assess coccolith/pentalith fragmentation, recrystallization and calcite overgrowth, 

and to aid species identification (Plate 1). Abundances of the holococcoliths of Zygrhablithus 
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bijugatus, nannoliths of Discoaster spp. (115 samples) and pentaliths of Braarudosphaera 

spp. (136 samples) were obtained by counting the number of specimens in a defined area of 

the smear slides (N/mm
2
, counted in 30 fields of view in each sample) [Backman and 

Shackleton, 1983]. These counts provide a semi-quantitative measure of abundance because 

the number of specimens in each field of view varies amongst smear slides. Furthermore, 

quantifying Braarudosphaera spp. was not straightforward because the dodecahedral-shaped 

coccospheres consist of twelve pentaliths, which, in turn, are composed of five laminated, 

trapezoidal-shaped segments that easily disintegrate further into smaller fragments (Plate 1, 

images (B) and (C); [Young et al., 2003]). The number of Braarudosphaera pentaliths was 

derived from counts of segments divided by five for most samples because complete 

pentaliths were preserved intact only in a few samples (Plate 1). These calculated abundances 

may represent an overestimate because of the potential further fragmentation of segments into 

the composite laminae. Also, the quality of the abundance records presented here may be 

compromised by the moderate-to-severe recrystallization, as seen in the SEM micrographs 

(Plate 1).  

 

2.4. Tuned age model and time series analyses 

All data, previously published and newly generated, are presented on a previously published, 

astronomically tuned age model (Fig. 5). This age model is based on the alignment of 

maxima in CaCO3, interpreted to predominantly reflect productivity maxima, with 95 to 125-

ky minima (i.e. ~110 ky) in the stable eccentricity solution [Laskar et al., 2011; Liebrand et 

al., 2016]. The Braarudosphaera-rich oozes were excluded during the tuning process because 

they distort the background cyclicity in CaCO3, which is dominated by ~110-ky cycles. 

Higher frequency astronomical parameters were excluded from the tuning target-curve 

because of (i) the relatively weak expression of obliquity and precession signals in the Site 



 

 
© 2018 American Geophysical Union. All rights reserved. 

1264 records, (ii) the unknown phase relationship between CaCO3 and precession [Liebrand 

et al., 2016], and (iii) the uncertainty in the stability of the obliquity and precession solutions 

for ages ≳10 Ma [Zeeden et al., 2014]. The eccentricity tuning is unaffected by these 

uncertainties and is precise and accurate at the ~110-ky level of tuning. To quantify the 

spectral power of the CaCO3 record we used a multi-taper method [Ghil et al., 2002], an 

evolutive Fast Fourier Transform, and Wavelet analysis (Fig. 6) [Grinsted et al., 2004]. 

Gaussian filtering of the La2011_ecc3L nominal eccentricity solution and the 

Braarudosphaera pentalith record was applied to extract their 405-ky components (Fig. 7) 

[Laskar et al., 2011; Paillard et al., 1996].  

 

3. Results 

3.1. Stratigraphic records  

We identify seven acmes of varying intensity in the combined lithologic, geochemical and 

Braarudosphaera spp. abundance records and we number these from old to young as 

“Braarudosphaera Acme Events” (BAE-1 to BAE-7) (Figs. 5 and 7). BAE-3 and BAE-5 are 

composed of multiple events of shorter duration, which are given a letter as appendix: BAE-

3a, BAE-3b, BAE-5a, BAE-5b and BAE-5c. Core photographs reveal (Fig. 3) that BAE-3b 

and BAE-5b can be subdivided further into “couplet” or “triplet” horizons that probably 

reflect individual insolation peaks of relatively short duration (e.g., precession or obliquity 

maxima/southern hemisphere (SH) summer insolation maxima). Similar bundling of 

Braarudosphaera-rich layers has been observed in sediments recovered from DSDP Site 363 

[Kelly et al., 2003]. At Site 1264, BAE-7 is only partially recovered because of a short coring 

gap. Furthermore, the base of BAE-2 and the maxima of BAEs 3a and 5b overlap with core-

section ends. These artifacts may have affected the quality of the data records in these 

specific intervals. However, the close agreement between the patterns observed in CaCO3 
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from Sites 1264 and 1265 suggests that these issues are minor [Liebrand et al., 2016]. The 

thicknesses of the BAEs as recorded in the CaCO3 records from Sites 1264 and 1265 vary 

between ~10 and 35 cm (Fig. 4).  

 

The sediment size-fraction records, combined with the high CaCO3 values (~90–95 %) and 

smear-slide observations, strongly suggest that calcareous nannofossils make up the bulk of 

the sediments at Site 1264 (Fig. 4) [Liebrand et al., 2016]. Over the Braarudosphaera oozes, 

the 0–38 μm size fraction increases from typical background values of ~95% to up to 98% of 

the dry sample weights. The Braarudosphaera-rich samples were difficult to wash over a 

sieve and size-fraction weights across these oozes may be affected by poor disintegration of 

the more lithified sediments, resulting in lower weights for the smaller size-fractions and 

higher weights for the greater size-fractions. Similar difficulties have been reported for 

Braarudosphaera-rich samples from DSDP Site 362 [Diester-Haass, 1988]. The water 

content of the sediment (expressed as percentages of the total wet-sample weights) decreases 

sharply from ~25% to 15% across the six most prominent Braarudosphaera oozes. This 

probably reflects lower porosity of the bulk sediment resulting from a smaller contribution of 

foraminifera (Fig. 4). Absolute values in the CaCO3 records agree well between Sites 1264 

and 1265 and generally vary around ~92% CaCO3 of dry sample weight, but increase to 

nearly 100% CaCO3 in the Braarudosphaera-rich layers.  

 

The benthic 
18

O and 
13

C stratigraphies are characterized by a ~1.0‰ amplitude variability 

on eccentricity timescales, and the ~110- and 405-ky cycles are particularly well expressed in 

the benthic 
18

O and 
13

C series, respectively [Liebrand et al., 2016]. These large amplitude 

~110-ky cycles in benthic 
18

O are interpreted to reflect substantial waxing and waning of the 

Antarctic ice sheets, with the largest glacial maxima reaching sizes equivalent to 
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approximately 85–110% of the modern ice volume on East Antarctica [Liebrand et al., 2017]. 

The bulk 
18

O record shows six prominent positive excursions from background values of 

~1.5‰ to peak values of ~2.5 to 3.0‰ concurrent with BAEs 3a, 3b, 5a, 5b, 6, and 7. Similar 

isotopic shifts across Braarudosphaera oozes have previously been noted in bulk records 

from the South Atlantic and Indian Ocean [Kelly et al., 2003; Peleo-Alampay et al., 1999; 

Siesser et al., 1992]. The absence of strong bulk 
18

O excursions during BAEs 1, 2, and 4 is 

suggestive of a smaller contribution of Braarudosphaera to the bulk sediment. The largest 

fluctuations in the bulk 
18

O record can be explained by disequilibrium “vital effects” and/or 

preferential sea floor diagenetic alteration of bulk calcite 
18

O in the BAEs. The exact 

biochemical mechanisms causing strong isotopic fractionation are currently unknown 

because culturing of B. bigelowii has not been successful to date [Hagino et al., 2013; Hagino 

et al., 2016], but it is a common feature seen in coccolithophores [Bolton et al., 2012; 

Hermoso et al., 2014; Stoll and Ziveri, 2004]. However, diagenesis could explain the entire 

increase in bulk carbonate 
18

O towards higher values, because both bulk and benthic 
18

O 

values reach maximum values of ~2.5 to 3.0‰ after the benthic values are adjusted to 

equilibrium calcite (note that uncorrected values are depicted in Figs 4 and 5) [Bukry, 1981]. 

The bulk 
13

C record varies between 1.5 and 2.5‰ and shows no similarly prominent 

excursions during the mid-Oligocene (Figs. 4 and 5). 

 

3.2. Age model and time series analysis 

The BAEs at Site 1264 occur within a 1.6-My time interval that spans from 29.5 to 27.9 Ma, 

on the eccentricity-tuned age model [Liebrand et al., 2016]. The acmes are concurrent with 

405-ky eccentricity Cycles 73–69 of the Rupelian (early Oligocene) and Chattian (late 

Oligocene) stages of the 2012 Geologic Time Scale (GTS2012, [Vandenberghe et al., 2012]). 

The Oligocene nannofossil biohorizons Base (i.e., lowest or first occurrence) Sphenolithus 



 

 
© 2018 American Geophysical Union. All rights reserved. 

distentus (315.14 armcd) and Base Sphenolithus ciperoensis (289.66 armcd) have been 

identified in the studied interval (Fig. 4) and are astronomically dated at ~29.81 and ~27.02 

Ma, respectively (Fig. 5). The tuned ages for these bioevents at Site 1264 are 190 and 120 ky 

younger, respectively, than the calibrated ages in the most recent Paleogene nannofossil 

biochronology (i.e., 30.00 and 27.14 Ma, respectively; [Agnini et al., 2014]). A direct 

comparison to the GTS2012, which for the Oligocene Epoch follows the manually tuned ages 

for equatorial Pacific ODP Site 1218 [Pälike et al., 2006] indicates that all BAEs identified at 

Sites 1264 and 1265 fall within magnetochrons C10n.1n–C11n.1r [Liebrand et al., 2016; 

Vandenberghe et al., 2012]. This finding is supported by the only reliable reversal identified 

at Site 1266, namely the top of Chron C11n, which is transferred to Site 1264. The 

independently tuned age for this reversal is in excellent agreement with the tuned Site 1218 

age and the GTS2012 [Liebrand et al., 2016; Pälike et al., 2006; Vandenberghe et al., 2012].  

 

Time-evolutive spectral analysis of the CaCO3 record from Site 1264 show that high spectral 

power is present in a frequency range of ~10.0–25.0 cycles/My, which corresponds to 

periodicities of ~110–40 ky/cycle (Fig. 6A). Weaker spectral peaks can be identified at the 

~2.5, ~5.0 and ~32.0 cycles/My frequencies, i.e., the ~405-, ~200- and ~31-ky periodicities. 

In contrast, wavelet analysis on the CaCO3 record from Site 1264 reveals significant spectral 

power near the precession frequencies (Fig. 6B) [Liebrand et al., 2016]. A filter of the 405-ky 

periodicity present within the Braarudosphaera spp. abundance record shows a very strong 

response during the ~2.4-My eccentricity minimum at ~28.5 Ma. During ~2.4-My minima, 

the 405-kyr component of eccentricity is most strongly expressed and this appears to be 

highly amplified in the abundance record.  
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3.3. Calcareous nannofossil abundance, taxonomy and species concepts  

Variability in the amplitude of the BAEs is apparent in the Braarudosphaera spp. abundance 

record, and, apart from peak values during BAE-5 (~490/mm
2
), a general trend of increasing 

amplitude is observed through the succession of Braarudosphaera oozes (BAE-1 ~140 

N/mm
2
 to BAE-7 ~370 N/mm

2
) (Figs. 4 and 5). The Braarudosphaera abundance record 

generally confirms the number of BAEs observed in the CaCO3 and bulk 
18

O records. It also 

shows that not all of the acmes were of the same magnitude, and that some lack a clear 

lithological/geochemical expression. Both Discoaster spp. and Z. bijugatus are strongly 

anticorrelated with Braarudosphaera spp. abundance (Fig. 5). These patterns suggest that 

Braarudosphaera spp. outcompeted and/or diluted Z. bijugatus and Discoaster spp. during 

the acmes.  

 

The SEM images show Braarudosphaera and Discoaster specimens were more adversely 

affected by recrystallization and calcite overgrowth than other nannofossil taxa, and for many 

Discoaster specimens the overgrowth was so severe that an unambiguous visual 

identification to species level was not possible (Plate 1). However, very few Discoaster 

species are present in the Oligocene [Bukry, 1978b] and it is likely that the dominant six-

rayed discoasterids are Discoaster deflandrei and scarce five-rayed specimens are Discoaster 

tanii. The abundance record combines all Discoaster species encountered and we refer to 

these as Discoaster spp. Similarly, identification of Braarudosphaera specimens remained 

ambiguous. The Oligocene specimens appear too large to belong to the extant species B. 

bigelowii, and resemble the extinct species B. perampla [Bown, 2010; Raffi et al., 2016]. We 

therefore refer to these Oligocene Braarudosphaera specimens as Braarudosphaera spp., but 

they are most probably extinct close-relatives of the living B. bigelowii species-complex.  
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4. Astrochronology 

4.1. Durations of the acmes 

The eccentricity-tuned age model for Site 1264 is constructed using linearly interpolated ages 

between tuning tie-points every ~125 ky [Liebrand et al., 2016]. To obtain approximate 

durations of the BAEs, we assume that the effect of bioturbation was limited ~10 cm 

vertically. During deposition of the Braarudosphaera oozes, sedimentation rates likely 

increased sharply, complicating the estimation of their duration. Despite these uncertainties, 

we find that the BAEs at Site 1264 show large variability in durations (Table 1). BAE-3 and 

BAE-5 both consist of several closely spaced, hence shorter-lasting, acmes, which combined 

have durations of ~160 and ~210 ky, respectively (Table 1). BAE-5, which has the longest 

duration and highest amplitude, thus persisted for the greater part of 405-ky Eccentricity 

Cycle 71 (Figs. 5 and 7). The acmes identified in the Braarudosphaera abundance record 

(i.e., BAEs 1, 2, 3a, 3b, 4, 5a, 5b, 5c, 6, and 7) have durations ranging from ~20 to 80 ky (~55 

ky on average). These durations broadly correspond to the insolation periodicities and may 

represent single or multiple precession or obliquity cycles. Superimposed on BAE-3b and 

BAE-5b, three relatively brief events (~20 ky each, not numbered) are identified (Figs. 3 to 5, 

Table 1). These relatively short-lived events are expressed in the lithological record as 

individual ooze layers and are probably paced by the precession cycle (Fig. 3). Lithologically 

similar Braarudosphaera layers from DSDP Site 363 were estimated to have been deposited 

over a period of 1 to 2 ky each, based on a linear interpolation between magnetostratigraphic 

reversal ages [Kelly et al., 2003]. These very short durations contrast with the estimates based 

on the record from Site 1264, which suggest that (i) deposition of individual 

Braarudosphaera oozes lasted up to a (phase of a) 20-ky precession cycle (or 40-ky obliquity 

cycle), and (ii) the entire BAE-5 had a duration of >210 ky. 
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4.2. Astronomical pacing of the acmes 

The Braarudosphaera event with the longest duration on the eccentricity-tuned age model is 

BAE-5, and it is contemporaneous with a very pronounced minimum in the ~2.4-My 

eccentricity cycle at ~28.5 Ma, which coincides with the high amplitude 405-ky Eccentricity 

Cycle 71 that is characterized by low amplitude ~110-ky cycles (Fig. 5) [Liebrand et al., 

2016]. A strong expression of the ~405-ky beat is present in the Braarudosphaera abundance 

record (Fig. 7).  BAEs 2, 3, and 6 concur with ~110-kyr eccentricity maxima which, apart 

from during BAE-2, have a relatively subdued amplitude because of the ~2.4-My eccentricity 

minimum. However, BAE-1 (weak), BAE-4 (weak), and BAE-7 (strong) are concurrent with 

~110-ky eccentricity minima. The opposite phase relationships between most BAEs and 

different eccentricity periodicities (i.e., they are concurrent with a ~2.4 My eccentricity 

minimum, and most BAEs also with 405- and ~110 ky eccentricity maxima) indicate a 

complex forcing mechanism. Three lines of evidence suggest that obliquity and precession 

cycles paced the BAEs, despite the uncertainty in the exact phase relationships. First, BAEs 

2, 3, 5 and 6 occur during 405-ky eccentricity maxima (Fig. 7), suggesting a pacing of these 

acmes by (eccentricity-modulated) precession. Second, two of the acmes (BAE-3b and BAE-

5b) each comprise multiple prominent Braarudosphaera-rich layers that are separated by 

brief intervals of lower Braarudosphaera abundance (Figs. 3 to 5). This is indicative of a 

bundling of lithological cycles and probably reflects groups of precession-paced events 

(Table 1). Third, the CaCO3 record across the Braarudosphaera acmes contains the highest-

frequency spectral power associated with the obliquity and precession cycles according to the 

evolutive and wavelet analyses, respectively (Fig. 6). Both the precession- and obliquity-

dominated pacing of the acmes is in agreement with independent estimates for inter-bed 

periods of 100 ky or less for the Braarudosphaera-rich layers recorded at Site 362 [Bukry, 
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1978a]. No clear relationship is observed between ~175-ky amplitude modulations of 

obliquity and the acmes, despite strong spectral power near a ~200-ky periodicity (Fig. 5). 

 

5. Discussion 

The high-resolution records from Sites 1264 and 1265 convincingly show, for the first time, 

that astronomical climate forcing was a key contributing factor to the formation of the South 

Atlantic Braarudosphaera acmes. Yet, the exact paleoecologic, paleoceanographic and 

paleoclimatologic significance of the BAEs remains elusive because of the poor constraints 

on the life cycle of this group of calcareous nannoplankton. In this discussion, we will briefly 

summarize the current understanding of the life cycle of the extant species B. bigelowii, and 

subsequently speculate on two mechanisms that can link astronomical forcing to aberrant, 

climatologic and oceanographic conditions potentially conducive to Braarudosphaera 

calcification.   

 

5.1. The life cycle of B. bigelowii 

To date, the extant B. bigelowii has not been cultured successfully, nor has its life cycle been 

directly observed, and its exact ecologic preferences thus remain unclear [Hagino et al., 

2013; Hagino et al., 2016]. Yet, two observations provide some constraints on B. bigelowii, 

namely: (i) this taxon most probably has alternating life cycle stages that correspond to the 

number of chromosomes in the cell: one stage is motile, non-calcifying and probably haploid; 

the other is non-motile, calcifying and probably diploid [Billard and Inouye, 2004; Hagino et 

al., 2013; Thompson et al., 2012], and (ii) the species belonging to the genus 

Braarudosphaera have no test perforations and thus likely reflect a (non-reproductive) 

resting stage or “cyst” [Billard and Inouye, 2004]. If we accept these constraints on 

Braarudosphaera‟s life cycle and combine this information with the modern day 



 

 
© 2018 American Geophysical Union. All rights reserved. 

biogeographical distribution, which shows that B. bigelowii is limited to neritic settings that 

are generally characterized by shallow water depths [Martini, 1967; Takayama, 1972; 

Tanaka, 1991], we can tentatively infer that Braarudosphaera spp. may require a sea-floor 

during its non-motile, calcifying resting stage, that prevents the cysts from sinking. Similar to 

previous authors, we speculate that the mid-Oligocene acmes may indicate phases of 

decreased reproduction, increased encystment, and perhaps increased unfavorable 

paleoecologic conditions for Braarudosphaera to thrive in its motile non-calcifying stage 

[Bown, 2005b; Bukry, 1978a; Bybell and Gartner, 1972; Fischer et al., 1967].  

 

5.2. Towards a mechanistic understanding of the Oligocene acmes 

Two observations are key to unraveling the main causes of the mid-Oligocene BAEs. First, 

the most geographically extensive occurrences of Braarudosphaera are in both the North and 

the South Atlantic, broadly around 30N and 30S, respectively (Fig. 8) [Parker et al., 1985]. 

Second, the oozes from Sites 1264 and 1265 are astronomically paced (Figs. 5 to 7 and Table 

1). We argue that these observations, i.e., the biogeography and timing of events, can be 

explained by astronomical forcing of the mid-Oligocene climate system and the responses of 

the atmosphere and surface ocean. We propose two different chains of events capable of 

linking astronomical forcing of the climate system (part 1, shared by both hypotheses), to 

latitudinal migrations of atmospheric and/or oceanic fronts [Bard and Rickaby, 2009; 

Bosmans et al., 2015b; Peeters et al., 2004] and pycnocline and/or thermocline shallowing, 

hyperstratification and recurrent Braarudosphaera acmes in the South Atlantic Ocean (part 3, 

also shared by both hypotheses). The first mechanism (i.e., the Monsoon Hypothesis; part 2a) 

proposes basin-wide hyperstratification through increased moisture transport to the South 

Atlantic Ocean; the second mechanism (i.e., the Eddy Hypothesis; part 2b) proposes eddy-
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contained hyperstratification through strong isopycnals at the base of the eddies and increased 

eddy formation by either the proto-Benguela Current, Agulhas leakage, or both.  

 

 (1)  Insolation forcing of the BAEs 

The concurrence of the best-developed acmes with a very pronounced minimum in 

the ~2.4-My eccentricity cycle (Figs. 5 and 7), suggests that the oceanographic 

mechanism that facilitated the BAEs was enhanced as a result of the prolonged 

absence of insolation “extremes” at the low-to-mid southern latitudes. In this 

interpretation the anomalous occurrence of BAEs 2 and 6 with ~110-ky eccentricity 

maxima is explained by interference between obliquity and precession that operated 

to cancel out their effects on low-to-mid southern latitude insolation. Such 

interference, during (at least) these two events, brings all BAEs in agreement with a 

hypothetical regional insolation-threshold (Fig. 7), below which conditions were 

suitable for acmes to develop. Yet, we cannot be certain about interference between 

obliquity and precession at these times because the astronomical solution for these 

parameters is not stable for ages >10 Ma [Zeeden et al., 2014].   

 

(2a) Monsoon Hypothesis: Atmospheric circulation and the hydrological cycle 

We propose that sustained wet monsoon conditions increased the annually averaged 

oceanic rainfall over the subtropical South Atlantic Ocean and caused a reduction of 

surface-ocean salinity [Bukry, 1974]. This hypothesis is based on the concurrence of 

the BAEs with a ~2.4-My eccentricity minimum, when the amplitude of precession is 

reduced. We assume that dry and/or stormy winter monsoons were limiting 

Braarudosphaera acmes during times with relatively higher amplitude precession 

cycles (i.e., ~2.4-My eccentricity maxima), through insufficient build-up of relatively 
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“fresher” surface waters and/or through too much surface ocean mixing, respectively. 

The hypothesized sustained wet monsoon conditions, during the ~2.4-My eccentricity 

minimum, were amplified on astronomical time scales during more favorable 

precession and obliquity paced insolation conditions. Increases in oceanic rainfall at 

~30S could have been caused by a weakening of the Hadley Circulation (Fig. 8), for 

example, or by a very significant southward shift of the low pressure systems that are 

generally associated with the intertropical convergence zone (ITCZ; see published 

modeling examples that use present day geography: Fig. 9A–B). 

 

(2b) Eddy Hypothesis: Atmospheric circulation and eddy formation 

In this alternative hypothesis, we propose that increased eddy formation was caused 

by intensification of the proto-Benguela Current through the strengthening of the 

Easterlies, or by increased Agulhas leakage due to the southward migration of the SH 

subtropical (oceanic) front [Bard and Rickaby, 2009; Peeters et al., 2004]. Similarly 

to the mechanism proposed in the Monsoon Hypothesis, one phase of the precession 

cycle must have prevented enhanced eddy formation in earlier and later time periods 

when the amplitude of eccentricity was greater.  

We speculate that warm SH summers during high-amplitude eccentricity-modulated 

precession cycles weakened the Easterlies and reduced the formation of proto-

Benguela upwelling eddies (both cyclonic and anticyclonic). Alternatively, cold SH 

winters during these orbits, moved the subtropical front northwards too much for 

sufficient Agulhas rings (predominantly anticyclonic) to enter and cross the South 

Atlantic Ocean.  
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(3)  Hyperstratification and Braarudosphaera acmes 

Following the Monsoon Hypothesis, we propose that the cumulative build-up of 

fresher (i.e. relatively hyposaline) surface waters during a prolonged interval of wetter 

winters in combination with reduced winter mixing caused the build-up of a lower-

salinity surface water lens, as is depicted in Fig. 1. In contrast, following the Eddy 

Hypothesis, increased proto-Benguela upwelling eddies and/or Agulhas leakage 

changed the physicochemical properties of the South Atlantic surface ocean. In this 

hypothesis, consecutive summers (though not of maximum amplitude) during the 

~2.4-My eccentricity minimum, in combination with a sufficient shedding of eddies 

during the relatively weak winters caused the more frequent traversing of eddy-

contained surface waters across the basin (Fig. 9C). The proposed mechanisms of 

both the Monsoon and Eddy hypotheses could have resulted in a relatively shallow 

pycnocline or thermocline and regional (ocean-basin-wide) or localized (eddy-

contained) salinity/temperature stratification of the surface ocean – conditions we 

refer to as “hyperstratification” [Reichart et al., 2004]. This regional or local 

shallowly situated pycno-/thermocline could have served as a virtual sea floor 

[Reichart et al., 2004] capable of concentrating Braarudosphaera in the water 

column. 

 

These chains of events are distinct from that previously proposed for hyperstratified 

conditions in the northern Arabian Sea, during the Pleistocene [Reichart et al., 2004]. There, 

the formation of a highly saline mixed layer and a strong density gradient followed glacial 

overturning events (i.e., Heinrich events). Such a mechanism was invoked to explain the 

presence of a lagoonal dinoflagellate species in the open ocean, and the hyperstratified 

conditions were postulated to simulate a shallow seafloor that is needed for the germination 
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of the dinoflagellate cysts [Reichart et al., 2004]. A similar link to glacial overturning events 

for hyperstratification of the Oligocene South Atlantic Ocean is unlikely because we do not 

find a strong correlation between benthic 
18

O values and the BAEs (Figs. 4 and 5).  

 

5.3. Atmospheric circulation  

If we accept astronomically forced changes in hydroclimate as the forcing factor responsible 

for the BAEs (i.e. the Monsoon Hypothesis), then we need to identify the atmospheric 

circulation changes that could have caused the monsoonally driven increases in rainfall over 

the surface ocean (and adjacent continents) needed for hyperstratification. Potential 

mechanisms include: (i) a weakening of the Hadley circulation causing a slowdown of 

moisture transport away from the subtropical high-pressure belt, where relatively cold and 

dry air of the Hadley and Ferrel cells sinks underneath the flow of the subtropical jet (Fig. 8), 

and (ii) a significant southward migration of the intertropical convergence zone (ITCZ) and 

associated low-pressure system, where warm and wet air of the Hadley cells rises (Fig. 8). 

Both of these mechanisms could increase the freshwater budget in the subtropical South 

Atlantic Ocean.  

 

Support for a sustained southwards shift of low air-pressure systems can be found in climate 

modeling studies of the Pleistocene (Fig. 9). Computed precipitation anomalies between 

precession minima and maxima, using an atmospheric circulation model and present-day 

geography, show that precession forcing exerts the strongest control on the redistribution of 

moisture at low-to-mid latitudes by modulating the amplitude of seasonal monsoons (Fig. 

9A) [Bosmans et al., 2015b; Mohtadi et al., 2016]. In addition, this model supports a smaller 

contribution of obliquity forcing to monsoon intensity [Bosmans et al., 2015a]. A different 

modeling study, comparing moisture transport between the Last Glacial Maximum and 
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Heinrich Stadial 1, using modern day geography and including changes in radiative forcing 

(i.e., isolation and greenhouse gasses), shows an increase in rainfall over the South Atlantic 

Ocean at tropical to subtropical latitudes between these two time periods (Fig. 9B) [Liu et al., 

2009; Mohtadi et al., 2016; Otto-Bliesner et al., 2014]. These two studies of the Pleistocene 

are driven by different mechanisms than the one we propose for the Oligocene. However, 

they show that a basin-wide rain belt can develop and persist on astronomical time scales 

over the South Atlantic Ocean along a ~10S latitudinal band.  

 

No similar modeling has been performed for the mid-Oligocene time interval, but given these 

modeling examples for the Pleistocene we deem larger changes in hydroclimate during the 

Oligocene a possibility, especially considering the different paleoclimatic and 

paleogeographic boundary conditions. The ITCZ in the Pacific is suggested to have migrated 

northwards in response to extra-tropical cooling associated with Antarctic glaciation across 

the Eocene-Oligocene transition [Hyeong et al., 2016]. But a much greater latitudinal shift in 

the ITCZ of the opposite sign (southwards) is required to explain the mid-Oligocene BAEs 

through overhead precipitation. This observation raises feasibility questions from the 

perspective of atmospheric heat transport [Donohoe et al., 2013] and perhaps points to the 

importance of freshwater delivery by large African and South American rivers systems with 

headwaters in lower latitudes. Regardless, from a physical oceanographic perspective, it is 

hard to conceive a stagnant South Atlantic surface ocean to persist for long periods of time 

(e.g. several months per year, annually recurring for thousands of years), thought to be 

needed for the BAEs to occur and form laminated (at Site 20 at least), laterally extensive, 

decimeter-thick ooze packages. The absence of organic rich sediments in the South Atlantic 

during the mid-Oligocene indicates that bottom waters remained well oxygenated throughout 

the BAEs, and that stratification must thus have been a surface-ocean phenomenon.  
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5.4. Dynamics at the oceanic mesoscale 

Eddies in the modern ocean are characterized by complex and dynamic behavior, including 

“eddy trapping” and “eddy pumping” [McGillicuddy Jr., 2016]. Eddy trapping refers to the 

pinching off of fluid rings (approx. 40-280 km in diameter, with cores of ~50 km [Wang et 

al., 2015] and life times of a few days to two years) that can transport associated planktonic 

ecosystems inside them from, for example, the Indian Ocean into the South Atlantic Ocean 

[Villar et al., 2015]. In the modern, both the Benguela Current and the Agulhas retroflection 

produce rings (eddies) that can propagate far into the interior of the South Atlantic Ocean and 

thereby provide lateral fluxes of physical, chemical and biological properties (Fig. 9C) 

[Lehahn et al., 2011; McGillicuddy Jr., 2016; Villar et al., 2015]. Many of the modern 

Agulhas retroflection-derived eddies have at least ~30% of their contents derived from the 

Indian Ocean and are found to travel across the subtropical gyre, before disintegrating [Wang 

et al., 2015]. Eddy pumping is the dynamic process of upwelling or downwelling within 

cyclonic (SH clockwise) and anticyclonic (SH anticlockwise) eddies that dome or depress the 

seasonal and mean pycnoclines, respectively [McGillicuddy Jr., 2016]. For cyclonic eddies 

this results in density surfaces that coincide with the base of the euphotic zone (~500 m water 

depth), which could constitute the virtual seafloor potentially important for Braarudosphaera 

during its resting stage.  

 

We speculate that a greater number of proto-Benguela Current-derived eddies, or rings 

shedding from the Agulhas retroflection, resulted from astronomically forced intensifications 

of the Easterlies, or a southward shift of the (oceanic) subtropical front, respectively. These 

chains of events may provide an explanation for the increase in calcification and export 

productivity associated with the BAEs, in an otherwise oligotrophic central gyre. However, 

the near-monospecific nature of the Braarudosphaera oozes is difficult to explain if eddy 
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occurrence alternated with gyre conditions that were host to normal planktonic populations. 

Another potential problem with the Eddy Hypothesis could be the gradual subduction of 

eddies, in the present day, to ~600 m water depth upon leaving the Cape Basin (Fig. 9C) 

[Arhan et al., 1999; Garzoli et al., 1999; Herbette et al., 2004]. Subduction would not 

necessarily limit the habitable environment for Braarudosphaera to the eastern South 

Atlantic, because similar to the base of eddies, the boundary between the tops of the 

subducted eddies and the overlying surface waters are characterized by a strong pycnocline 

and thermocline [Pegliasco et al., 2015], and could potentially serve as a physical barrier that 

partially prevents biota from sinking.  

 

The Eddy Hypothesis does not explain why Braarudosphaera are not found in earlier and 

later episodes with similar, but hypothesized, weaker, dynamics at the oceanic mesoscale in 

the South Atlantic. However, the geographic overlap between the modern day Benguela eddy 

and Agulhas ring corridors, and the Oligocene Braarudosphaera belt is striking (Fig. 9C) 

[Chelton et al., 2011; Pegliasco et al., 2015], despite poor constraints on the exact latitudinal 

extent of the South Atlantic Braarudosphaera belt due to a scarcity of drill sites between ~0 

and 25 S and between 35 and 50 S (Fig. 1) [Peleo-Alampay et al., 1999]. Nevertheless, 

acoustic horizons linked to Braarudosphaera oozes can be traced to Site 360 in the southern 

Cape Basin (near Cape Town, [Bolli et al., 1978]), making the geographic match even more 

compelling. The greater contribution of Braarudosphaera fragments to the bulk sediment in 

the South Atlantic compared to the North Atlantic matches the greater longevity of eddies in 

the former basin [Chelton et al., 2011].  
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5.5. Recurrence of the acmes  

The records from Sites 1264 and 1265 show that the BAEs were recurrent on eccentricity to 

precession time scales, and were sustained phenomena that persisted for several thousand up 

to hundreds of thousands of years. Next to this evidence for astronomical forcing of the 

Oligocene BAEs through the latitudinal migrations of atmospheric fronts, a couple of 

observations shed further light on climatic/oceanographic mechanisms. First, greater numbers 

of acmes are described at sites near the continental margins than at pelagic sites (e.g., at least 

34 cyclical Braarudosphaera oozes at Site 362 [Bukry, 1978a]). Second, the best-developed 

ooze at Site 20, located in the western part of the South Atlantic Ocean, shows laminae (Fig. 

1) [Maxwell et al., 1970].  

 

In the Monsoon Hypothesis, the greater number of acmes in drill cores from the African 

continental margin suggests that these surface waters were more frequently stratified than 

those overlying open ocean sites. We speculate that the ~34 layers at Site 363 reflect 

precession-paced run-off events, similar in origin perhaps to the precession-paced sapropels 

of the Miocene-Pleistocene Mediterranean. Hyperstratification (and sapropel formation) of 

the Mediterranean occurred more readily due to the greater influx of freshwater during the 

wet summer monsoon, both from increased runoff and directly through oceanic rainfall 

[Bosmans et al., 2015b; Bosmans et al., 2015c]. The laminae at Site 20 suggest that 

individual BAEs consist of annual layers that could reflect a seasonal amplification of the 

sustained moderately wet monsoon conditions that were already prevailing throughout the 

year. The laminae represent recurring blooms of Braarudosphaera that probably coincided 

with the annual wet summer monsoons.  
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In the Eddy Hypothesis, the greater number of BAEs preserved at Site 362 and 363 would 

reflect a greater number and more continuous stream of eddies and/or Agulhas rings forming 

and passing over this region of the subtropical South Atlantic, despite the fact that the 

Benguela Current, responsible for many eddies in this region in the modern, did not develop 

or fully intensify until the middle Miocene [Diester-Haass, 1988; Diester-Haass et al., 1990], 

and that, present-day Agulhas rings do not travel so far to the North-East (Fig. 9C). The 

laminae found at Site 20 would in this hypothesis reflect productivity increases associated 

with eddies moving overhead, alternated with relative brief intervals of no deposition, until 

the next Braarudosphaera-laden eddy arrived.  

 

5.6. Oligocene climatic boundary conditions  

The Braarudosphaera oozes at Sites 1264 and 1265 are restricted to a 1.6-My interval (~29.5 

to 27.9 Ma) and have not yet been identified during earlier and later ~2.4-My eccentricity 

minima. This suggests that other boundary conditions than astronomical configurations, such 

as climate evolution during the mid-Oligocene, caused the South Atlantic basin to become 

sensitive to seasonal hyperstratification under favorable insolation conditions. Long-term 

climate evolution during the Oligocene is characterized by a cooling trend/Antarctic ice sheet 

expansion during the early Oligocene (~33.9 to 28.0 Ma), a generally cold mid-Oligocene 

glacial interval (~28.0 to 26.3 Ma) that is characterized by a generally large, but highly 

unstable, Antarctic ice sheet, and a late Oligocene phase of global warming/reduction in 

Antarctic ice volume (~26.3 to 23.7 Ma; [Liebrand et al., 2017; Pälike et al., 2006]). The 

BAEs coincide with the latest part of the early Oligocene cooling trend, suggesting that 

hyperstratification in the South Atlantic Ocean occurred during relatively colder conditions 

globally. In addition to climatic boundary conditions, tectonic processes, such as the opening 
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of ocean gateways, may have affected the timing of the BAEs on multi-My time scales [Kelly 

et al., 2003; Peleo-Alampay et al., 1999]. 

 

6. Conclusions 

We identify strong ~2.4-My and 405-ky eccentricity pacing of Braarudosphaera acme events 

at Walvis Ridge Site 1264, which broadly correlate to other similar events reported at mid-

latitude South Atlantic sites. We interpret the underlying mechanism of the acmes to be 

insolation-controlled (predominantly precession) latitudinal migrations of atmospheric and 

oceanic fronts, and the effect this has on either the hydrological cycle and oceanic and 

circum-Atlantic rainfall and runoff (i.e., the Monsoon Hypothesis), or the amount of eddies 

derived from the proto-Benguela Current and/or the Agulhas retroflection (i.e., the Eddy 

Hypothesis). Both mechanisms link astronomical forcing of the mid-Oligocene climate 

system to regional or local pycnocline (thermocline) shallowing, surface ocean 

hyperstratification, and to the unusual increase in calcification and export productivity of the 

prymnesiophyte alga Braarudosphaera. We suggest that the BAEs concur with a ~2.4-My 

eccentricity minimum when the amplitude of precession is reduced (and the ~1.2-My 

obliquity cycle has a maximum amplitude), because winter monsoon conditions were limiting 

Braarudosphaera acmes during times with relatively higher amplitude precession cycles (i.e., 

~2.4-My eccentricity maxima), through insufficient oceanic rainfall and/or too much surface 

ocean mixing (Monsoon Hypothesis), or through limited formation of proto-Benguela 

upwelling eddies and/or limited number of Agulhas rings making it into the South Atlantic 

(Eddy Hypothesis). In these hypotheses, the acmes were annually amplified during the 

relatively wetter summer monsoons, or when most eddies were shed, as is suggested by 

laminae preserved in some Braarudosphaera oozes. Hyperstratification and the development 

of a shallow pycnocline/thermocline that may have served as a virtual seafloor, is supported 
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by modern biogeographical distribution of Braarudosphaera, and by its alternating life cycle 

stages. The likely need of Braarudosphaera for a real or virtual seafloor to prevent it from 

sinking during its non-motile calcifying life cycle stage would reconcile the contrasting 

distribution patterns of Braarudosphaera in the modern ocean (shallow water coastal 

settings) compared to their relatively brief and expanded oceanic distribution in the past. 

However, further constraints on Braarudosphaera‟s life cycle are needed to be certain about 

a potential benthic resting stage. Until such data becomes available, we tentatively interpret 

Braarudosphaera as a hyperstratification indicator – a potential finding that may apply to 

other regions in the global ocean that have Braarudosphaera-rich deposits. 
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Figure 1. Geographic extent of Braarudosphaera-rich layers. Modern geography of the 

South Atlantic Ocean with the locations of DSDP and ODP drill sites (brown areas with 

chalk-pattern) wherefrom mid-Oligocene Braarudosphaera-rich layers have been recovered. 

For South Atlantic Ocean sites information from the relevant DSDP and ODP site reports is 

recompiled. For a global compilation of Oligocene strata with and without Braarudosphaera 

recovered from DSDP and ODP sites (until 1999) we refer to Peleo-Alampay et al., [1999]. 

Blue lines on continents represent modern-day rivers that may have delivered fresh waters to 

the South Atlantic surface ocean. Light blue areas project the potential mid-Oligocene extent 

of seasonally recurrent surface-ocean stratification caused by increased precipitation over the 

sea, possibly aided by increased continental runoff closer to the coasts, indicated by a darker 

blue. According to the eccentricity-tuned age model [Liebrand et al., 2016], the 

Braarudosphaera oozes are present on oceanic crust ≥27.9 Ma. This figure is an adaptation 

of figures from refs: [Kelly et al., 2003; O'Connor and Duncan, 1990; Parker et al., 1985; 

Peleo-Alampay et al., 1999], and combines geographic information and anomaly profiles of 

www.odsn.de and www.serg.unicam.it, respectively.  
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Figure 2. Modern sea-surface salinity, and sea-surface nitrate and phosphate 

concentrations. (A) Sea-surface salinity, which show relatively hypersaline conditions in the 

modern South Atlantic Ocean. (B) Sea-surface nitrate concentrations, and (C) sea-surface 

phosphate concentration, which show relatively oligotrophic conditions in the modern South 

Atlantic Ocean. Data taken from www.eWOCE.org.  
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Figure 3. Core photographs of Braarudosphaera oozes. On-splice and off-splice examples 

of the lithologic expression of Braarudosphaera Acme Events (BAEs) 3, 5a and 5b at Site 

1264. Strong color variability between and within the acmes can be observed, suggesting 

higher-frequency precession and/or obliquity forcing. The color contrast of the images is 

enhanced.  
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Figure 4. Stratigraphy across the Braarudosphaera oozes. The data records are presented 

against stratigraphic depth (armcd = adjusted revised meters composite depth, see [Liebrand 

et al., 2016]). (A) Braarudosphaera spp. abundances. The biohorizons Base Sphenolithus 

ciperoensis and Base Sphenolithus distentus are indicated. (B–E) Stable isotope records. (B) 

Bulk and (C) benthic foraminiferal (Cibicides mundulus) 
18

O records. (D) Bulk and (E) 

benthic foraminiferal (Cibicides mundulus) 
13

C records. (F–I) Lithological records. (F) 

CaCO3 estimates for Sites 1264 (dark brown) and 1265 (light brown). Percentages refer to 

dry weights (i.e., after freeze-drying). (G) Water content of samples. Percentages refer to 

total sample weights (i.e., before freeze-drying). (H) Size fraction records from Site 1264. 

Percentages as in panel (F). (I) Core photographs from Site 1264. Apparent cyclicity results 

from uneven lighting conditions when the photographs were taken. Red crosses and shaded 

area indicate short recovery gaps at Site 1264. These gaps are covered by data from nearby 

Site 1265 (both XRF and isotopes). (J) Magnetostratigraphy from Site 1266 transposed to 
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Site 1264 depth [Liebrand et al., 2016]. The shaded gray areas indicate that the polarity 

signal is ambiguous in these intervals.  

  



 

 
© 2018 American Geophysical Union. All rights reserved. 

 

Figure 5. Astrochronology for the mid-Oligocene Braarudosphaera acmes. The data 

records are presented against eccentricity-tuned age [Liebrand et al., 2016].  

(A-C) Calcareous nannofossil records. (A) Discoaster spp. abundances. (B) Zygrhablithus 

bijugatus abundances. (C) Braarudosphaera spp. abundances. Vertical grey bars correspond 

to the Braarudosphaera acmes. The biohorizons Base Sphenolithus ciperoensis and Base 

Sphenolithus distentus are indicated. (D-E) Stable isotope records. (D) Bulk (light blue) and 

benthic (dark blue) foraminiferal (Cibicides mundulus) 
18

O records. (E) Bulk (light green) 

and benthic (dark green) foraminiferal (Cibicides mundulus) 
13

C records. (F) CaCO3 

estimates for Sites 1264 (dark brown) and 1265 (light brown). (G-H) Astronomical solutions. 

(G) Earth‟s obliquity modulation [Laskar et al., 2004]. (H) Earth‟s orbital eccentricity 

solution (dark grey, La2011_ecc3L, [Laskar et al., 2011]) and its ~2.4-My component (light 

brown). (I) Magnetostratigraphy from Walvis Ridge (WALV). PMAG = paleomagnetism. (J) 

The geologic (magnetic polarity) time scale (GTS2012, [Vandenberghe et al., 2012]).  
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Figure 6. Spectral analyses on carbonate content. (A) Evolutive spectral analysis and 

singular spectrum analysis on the CaCO3 record using a multi-taper method [Ghil et al., 

2002]. (B) Wavelet analysis and global spectrum analysis on the CaCO3 record. Black lines 

on the wavelet analysis and red lines on the spectral analyses represent the 95% confidence 

level. White shaded area in top right corner represents the „cone of influence‟, where edge 

effects become important [Grinsted et al., 2004]. For both panels: blue colors indicate low 

spectral power and red colors indicate high spectral power.  
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Figure 7. Eccentricity pacing of hyperstratification and Braarudosphaera acmes. (A) 

Gaussian filter of the Braarudosphaera spp. abundance record centered around the 405-ky 

periodicity (i.e., frequency = 2.5, bandwidth = 0.5, [Paillard et al., 1996]). (B) 

Braarudosphaera spp. abundance record. (C) Gaussian filter of the 405-ky eccentricity 

periodicity. (D) Earth‟s orbital eccentricity [Laskar et al., 2011]. Vertical red lines 

correspond to Braarudosphaera acmes that occurred during 405-ky and ~110-ky eccentricity 

maxima. Vertical blue lines show those acmes that correspond to 405-ky and ~110-ky 

eccentricity minima.  
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Figure 8. Links between atmospheric circulation, hyperstratification and 

Braarudosphaera acmes. Atmospheric circulation and areal extent of the Braarudosphaera 

acmes drawn on a paleogeographic reconstruction for the mid-Oligocene (~28.5 Ma, 

www.odsn.de). ITCZ stands for inter-tropical convergence zone. SHPB stands for subtropical 

high-pressure belt, PCZ stands for polar convergence zone. H = area of generally high air 

pressure. L = area of generally low air pressure. This figure is based on those by Parker et al., 

[1985] and Peleo-Alampay et al., [1999]. 
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Figure 9. Modeling outputs showing latitudinal rainfall bands that span the South 

Atlantic Ocean. (A) EC-Earth modeling output shows the influence of precession extremes 

on precipitation redistribution across the globe using modern day geography [Bosmans et al., 

2015a; Bosmans et al., 2015b]. P stands for precession. (B) Modeling output of a transient 

simulation of climate evolution of the past 21 ky using a fully coupled global climate model 

(i.e., CCSM3) that includes radiative forcing. It shows that during the last glaciation 

meridional overturning circulation has the largest control on tropical moisture distribution 

[Liu et al., 2009; Otto-Bliesner et al., 2014]. HS1 stands for Heinrich Stadial 1. LGM stands 

for Last Glacial Maximum. The relevance of these models to the Oligocene is that they both 

show a latitudinal rainfall band across the South Atlantic Ocean. Panels A and B are adapted 

from Mohtadi et al., [2016]. (C) Approximate pathways of Benguela Current-derived 

cyclonic and anticyclonic eddies (purple) and Agulhas rings (teal), which are almost all 

anticyclonic, in the modern. This panel is loosely based on satellite altimetry data presented 

in [Chelton et al., 2011; Pegliasco et al., 2015; Schouten et al., 2000; Souza et al., 2011; 

Wang et al., 2015]. 
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Plate 1. Micrographs of calcareous nannofossils. (A–C) Scanning Electron Microscope 

(SEM) micrographs of Braarudosphaera spp. pentaliths. Specimens show strong overgrowth 

of calcite and micron-sized crystals and particles. Disintegrated fragments of 

Braarudosphaera can be seen in the background. (D–F) SEM micrographs of Discoaster 

specimens show strong calcite overgrowth. (D) Discoaster deflandrei and Zygrhablithus 

bijugatus, (E) Discoaster deflandrei. (F) Discoaster cf. D. tanii. (G–I) Light microscope 

micrographs of Braarudosphaera spp., (G, H) Parallel light. (I) Crossed nicols. Horizontal 

bars in all micrographs are 5 μm, apart from panel (A) where the bar represents 50 μm. 

Samples ordered with increasing depth/age: (D, E) Sample #3553, 301.985 armcd, 28.533 

Ma. (H) Sample #3558, 302.105 armcd, 28.546 Ma. (A–C, G, I) Sample #3566, 302.285 

armcd, 28.565 Ma. (F) Sample #4042, 314.42 armcd, 29.735 Ma. 
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Table 1. Durations of Braarudosphaera Acme Events. Duration estimates are based on the 

Braarudosphaera spp. abundance record and the eccentricity tuned age model for Site 1264. 

BAE-3b and 5b consist of three shorter lasting acmes each, which average duration estimates 

are given in the last column. N/A = not applicable.  

Event: 

Base age 

(Ma) 

Top age 

(Ma) 

Difference 

(ky) 

Shortest Events 

(ky) 

BAE-1 29.513 29.462 50 N/A 

BAE-2 29.347 29.292 55 N/A 

BAE-3 29.058 28.899 159 N/A 

BAE-

3a 29.058 28.985 72 N/A 

BAE-

3b 28.971 28.899 72 24 

BAE-4 28.809 28.786 23 N/A 

BAE-5 28.619 28.407 212 N/A 

BAE-

5a 28.619 28.572 47 N/A 

BAE-

5b 28.572 28.508 65 22 

BAE-

5c 28.487 28.407 80 N/A 

BAE-6 28.151 28.103 48 N/A 

BAE-7 27.919 27.878 41 N/A 

 


