1,726 research outputs found

    The Presence of Weak Active Galactic Nuclei in High Redshift Star Forming Galaxies

    Full text link
    We present [OIII 5007A] observations of the star forming galaxy HDF-BMZ1299 (z=1.598) using Keck Observatory's Adaptive Optics system with the near-infrared integral field spectrograph OSIRIS. Using previous Halpha and [NII] measurements of the same source, we are able for the first time to use spatially resolved observations to place a high-redshift galaxy's substructure on a traditional HII diagnostic diagram. We find that HDF-BMZ1299's spatially concentrated nebular ratios in the central ~1.5 kiloparsec (0."2) are best explained by the presence of an AGN: log([NII]/Halpha)=-0.22+/-0.05 and 2sigma limit of log([OIII]/Hbeta)>0.26. The dominant energy source of this galaxy is star formation, and integrating a single aperture across the galaxy yields nebular ratios that are composite spectra from both AGN and HII regions. The presence of an embedded AGN in HDF-BMZ1299 may suggest a potential contamination in a fraction of other high-redshift star forming galaxies, and we suggest that this may be a source of the "elevated" nebular ratios previously seen in seeing-limited metallicity studies. HDF-BMZ1299's estimated AGN luminosity is L_Halpha = 3.7e41 erg/s and L_[OIII] = 5.8e41 erg/s, making it one of the lowest luminosity AGN discovered at this early epoch.Comment: 15 pages, 4 figures, ApJ Accepted, new version to be published (updated text, figures, and table

    The Impact of cold gas accretion above a mass floor on galaxy scaling relations

    Full text link
    Using the cosmological baryonic accretion rate and normal star formation efficiencies, we present a very simple model for star-forming galaxies (SFGs) that accounts for the mass and redshift dependencies of the SFR-Mass and Tully-Fisher relations from z=2 to the present. The time evolution follows from the fact that each modelled galaxy approaches a steady state where the SFR follows the (net) cold gas accretion rate. The key feature of the model is a halo mass floor M_{min}~10^{11} below which accretion is quenched in order to simultaneously account for the observed slopes of the SFR-Mass and Tully-Fischer relations. The same successes cannot be achieved via a star-formation threshold (or delay) nor by varying the SF efficiency or the feedback efficiency. Combined with the mass ceiling for cold accretion due to virial shock heating, the mass floor M_{min} explains galaxy "downsizing", where more massive galaxies formed earlier and over a shorter period of time. It turns out that the model also accounts for the observed galactic baryon and gas fractions as a function of mass and time, and the cosmic SFR density from z~6 to z=0, which are all resulting from the mass floor M_{min}. The model helps to understand that it is the cosmological decline of accretion rate that drives the decrease of cosmic SFR density between z~2 and z=0 and the rise of the cosmic SFR density allows us to put a constraint on our main parameter M_{min}~10^{11} solar masses. Among the physical mechanisms that could be responsible for the mass floor, we view that photo-ionization feedback (from first in-situ hot stars) lowering the cooling efficiency is likely to play a large role.Comment: 19pages, 14 figures, accepted to ApJ, updated reference

    The Kiloparsec-Scale Kinematics of High-Redshift Star-Forming Galaxies

    Get PDF
    We present the results of a spectroscopic survey of the kinematic structure of star-forming galaxies at redshift z ~ 2 - 3 using Keck/OSIRIS integral field spectroscopy. Our sample is comprised of 12 galaxies between redshifts z ~ 2.0 and 2.5 and one galaxy at z ~ 3.3 which are well detected in either HAlpha or [O III] emission. These observations were obtained in conjunction with the Keck laser guide star adaptive optics system, with a typical angular resolution after spatial smoothing ~ 0.15" (approximately 1 kpc at the redshift of the target sample). At most five of these 13 galaxies have spatially resolved velocity gradients consistent with rotation while the remaining galaxies have relatively featureless or irregular velocity fields. All of our galaxies show local velocity dispersions ~ 60 - 100 km/s, suggesting that (particularly for those galaxies with featureless velocity fields) rotation about a preferred axis may not be the dominant mechanism of physical support. While some galaxies show evidence for major mergers such evidence is unrelated to the kinematics of individual components (one of our strongest merger candidates also exhibits unambiguous rotational structure), refuting a simple bimodal disk/merger classification scheme. We discuss these data in light of complementary surveys and extant UV-IR spectroscopy and photometry, concluding that the dynamical importance of cold gas may be the primary factor governing the observed kinematics of z ~ 2 galaxies. We conclude by speculating on the importance of mechanisms for accreting low angular-momentum gas and the early formation of quasi-spheroidal systems in the young universe.(abridged)Comment: 34 pages, 13 figures. Revised version accepted for publication in the Astrophysical Journal. Version with full-resolution figures is available at http://www.astro.ucla.edu/~drlaw/Papers/OSIRIS_data2.pd

    The SINS/zC-SINF survey of z~2 galaxy kinematics: Outflow properties

    Full text link
    Based on SINFONI Ha, [NII] and [SII] AO data of 30 z \sim 2 star-forming galaxies (SFGs) from the SINS and zcSINF surveys, we find a strong correlation of the Ha broad flux fraction with the star formation surface density of the galaxy, with an apparent threshold for strong outflows occurring at 1 Msun yr^-1 kpc^-2. Above this threshold, we find that SFGs with logm_\ast>10 have similar or perhaps greater wind mass loading factors (eta = Mdotout/SFR) and faster outflow velocities than lower mass SFGs. This trend suggests that the majority of outflowing gas at z \sim 2 may derive from high-mass SFGs, and that the z \sim 2 mass-metallicity relation is driven more by dilution of enriched gas in the galaxy gas reservoir than by the efficiency of outflows. The mass loading factor is also correlated with the SFR and inclination, such that more star-forming and face-on galaxies launch more powerful outflows. For galaxies that have evidence for strong outflows, we find that the broad emission is spatially extended to at least the half-light radius (\sim a few kpc). We propose that the observed threshold for strong outflows and the observed mass loading of these winds can be explained by a simple model wherein break-out of winds is governed by pressure balance in the disk. Using the ratio of the [SII] doublet in a broad and narrow component, we find that outflowing gas has a density of \sim10-100 cm^-3, significantly less than that of the star forming gas (600 cm^-3).Comment: 7 pages, 3 figures, accepted by Ap

    Constraints on the assembly and dynamics of galaxies. II. Properties of kiloparsec-scale clumps in rest-frame optical emission of z ~ 2 star-forming galaxies

    Full text link
    We study the properties of luminous stellar clumps identified in deep, high resolution HST/NIC2 F160W imaging at 1.6um of six z~2 star-forming galaxies with existing near-IR integral field spectroscopy from SINFONI at the VLT. Individual clumps contribute ~0.5%-15% of the galaxy-integrated rest-frame ~5000A emission, with median of about 2%; the total contribution of clump light ranges from 10%-25%. The median intrinsic clump size and stellar mass are ~1kpc and log(Mstar[Msun])~9, in the ranges for clumps identified in rest-UV or line emission in other studies. The clump sizes and masses in the subset of disks are broadly consistent with expectations for clump formation via gravitational instabilities in gas-rich, turbulent disks given the host galaxies' global properties. By combining the NIC2 data with ACS/F814W imaging available for one source, and AO-assisted SINFONI Halpha data for another, we infer modest color, M/L, and stellar age variations within each galaxy. In these two objects, sets of clumps identified at different wavelengths do not fully overlap; NIC2-identified clumps tend to be redder/older than ACS- or Halpha-identified clumps without rest-frame optical counterparts. There is evidence for a systematic trend of older ages at smaller galactocentric radii among the clumps, consistent with scenarios where inward migration of clumps transports material towards the central regions. From constraints on a bulge-like component at radii <1-3kpc, none of the five disks in our sample appears to contain a compact massive stellar core, and we do not discern a trend of bulge stellar mass fraction with stellar age of the galaxy. Further observations are necessary to probe the build-up of stellar bulges and the role of clumps in this process.Comment: 29 pages, 11 figures. Revised version accepted for publication in the Astrophysical Journa

    High-Redshift Star-Forming Galaxies: Angular Momentum and Baryon Fraction, Turbulent Pressure Effects and the Origin of Turbulence

    Full text link
    The structure of a sample of high-redshift (z=2), rotating galaxies with high star formation rates and turbulent gas velocities of sigma=40-80 km/s is investigated. Fitting the observed disk rotational velocities and radii with a Mo, Mao, White (1998) (MMW) model requires unusually large disk spin parameters lambda_d>0.1 and disk-to-dark halo mass fraction m_d=0.2, close to the cosmic baryon fraction. The galaxies segregate into dispersion-dominated systems with 1<vmax/sigma<3, maximum rotational velocities vmax<200 km/s and disk half-light radii rd=1-3 kpc and rotation-dominated systems with vmax>200 km/s, vmax/sigma>3 and rd=4-8 kpc. For the dispersion-dominated sample, radial pressure gradients partly compensate the gravitational force, reducing the rotational velocities. Including this pressure effect in the MMW model, dispersion-dominated galaxies can be fitted well with spin parameters lf lambda_d=0.03-0.05 for high disk mass fractions of m_d=0.2 and with lambda_d=0.01-0.03 for m_d=0.05. These values are in good agreement with cosmological expectations. For the rotation-dominated sample however pressure effects are small and better agreement with theoretically expected disk spin parameters can only be achieved if the dark halo mass contribution in the visible disk regime (2-3*rd) is smaller than predicted by the MMW model. We argue that these galaxies can still be embedded in standard cold dark matter halos if the halos did not contract adiabatically in response to disk formation. It is shown that the observed high turbulent gas motions of the galaxies are consistent with a Toomre instability parameter Q=1 which is equal to the critical value, expected for gravitational disk instability to be the major driver of turbulence. The dominant energy source of turbulence is then the potential energy of the gas in the disk.Comment: 23 pages, 4 figures, ApJ, in pres

    2D Kinematics and Physical Properties of z~3 Star-Forming Galaxies

    Full text link
    We present results from a study of the kinematic structure of star-forming galaxies at redshift z~3 selected in the VVDS, using integral-field spectroscopy of rest-frame optical nebular emission lines, in combination with rest-frame UV spectroscopy, ground-based optical/near-IR and Spitzer photometry. We also constrain the underlying stellar populations to address the evolutionary status of these galaxies. We infer the kinematic properties of four galaxies: VVDS-20298666, VVDS-020297772, VVDS-20463884 and VVDS-20335183 with redshifts z = 3.2917, 3.2878, 3.2776, and 3.7062, respectively. While VVDS-20463884 presents an irregular velocity field with a peak in the local velocity dispersion of the galaxy shifted from the centre of the galaxy, VVDS-20298666 has a well-resolved gradient in velocity over a distance of ~4.5 kpc with a peak-to-peak amplitude of v = 91 km/s . We discovered that the nearby galaxy, VVDS-020297772 (which shows traces of AGN activity), is in fact a companion at a similar redshift with a projected separated of 12 kpc. In contrast, the velocity field of VVDS-020335183 seems more consistent with a merger on a rotating disk. However, all of the objects have a high local velocity dispersion (sigma ~ 60-70 km/s), which gives v/sigma < 1. It is unlikely that these galaxies are dynamically cold rotating disk of ionized gas.Comment: 14 pages and 16 figure

    Short-lived star-forming giant clumps in cosmological simulations of z~2 disks

    Full text link
    Many observed massive star-forming z\approx2 galaxies are large disks that exhibit irregular morphologies, with \sim1kpc, \sim10^(8-10)Msun clumps. We present the largest sample to date of high-resolution cosmological SPH simulations that zoom-in on the formation of individual M*\sim10^(10.5)Msun galaxies in \sim10^(12)Msun halos at z\approx2. Our code includes strong stellar feedback parameterized as momentum-driven galactic winds. This model reproduces many characteristic features of this observed class of galaxies, such as their clumpy morphologies, smooth and monotonic velocity gradients, high gas fractions (f_g\sim50%) and high specific star-formation rates (\gtrsim1Gyr^(-1)). In accord with recent models, giant clumps (Mclump\sim(5x10^8-10^9)Msun) form in-situ via gravitational instabilities. However, the galactic winds are critical for their subsequent evolution. The giant clumps we obtain are short-lived and are disrupted by wind-driven mass loss. They do not virialise or migrate to the galaxy centers as suggested in recent work neglecting strong winds. By phenomenologically implementing the winds that are observed from high-redshift galaxies and in particular from individual clumps, our simulations reproduce well new observational constraints on clump kinematics and clump ages. In particular, the observation that older clumps appear closer to their galaxy centers is reproduced in our simulations, as a result of inside-out formation of the disks rather than inward clump migration.Comment: 11 pages, 6 figures, 1 table. Accepted for publication in the Astrophysical Journa

    Morphologies of local Lyman break galaxy analogs II: A Comparison with galaxies at z=2-4 in ACS and WFC3 images of the Hubble Ultra Deep Field

    Get PDF
    Lyman break galaxies (LBGs) display a range in structures (from single/compact to clumpy/extended) that is different from typical local star-forming galaxies. Recently, we have introduced a sample of rare, nearby (z<0.3) starbursts that appear to be good analogs of LBGs. These "Lyman Break Analogs" (LBAs) provide an excellent training set for understanding starbursts at different redshifts. We present an application of this by comparing the rest-frame UV/optical morphologies of 30 LBAs with those of sBzK galaxies at z~2, and LBGs at z~3-4 in the HUDF. The UV/optical colors and sizes of LBAs and LBGs are very similar, while the BzK galaxies are somewhat redder and larger. There is significant overlap between the morphologies (G, C, A and M_20) of the local and high-z samples, although the latter are somewhat less concentrated and clumpier. We find that in the majority of LBAs the starbursts appear to be triggered by interactions/mergers. When the images of the LBAs are degraded to the same sensitivity and resolution as the images of LBGs and BzK galaxies, these relatively faint asymmetric features are no longer detectable. This effect is particularly severe in the rest-frame UV. It has been suggested that high-z galaxies experience intense bursts unlike anything seen locally, possibly due to cold flows and instabilities. In part, this is based on the fact that the majority (~70%) of LBGs do not show morphological signatures of mergers. Our results suggest that this evidence is insufficient, since a large fraction of such signatures would likely have been missed in current observations of z>2 galaxies. This leaves open the possibility that clumpy accretion and mergers remain important in driving the evolution of these starbursts, together with rapid gas accretion through other means.Comment: ApJ, In Press (14 pages, 7 figures; minor changes since v1). For background material, see http://www.mpa-garching.mpg.de/~overzier/index.htm
    • …
    corecore