61 research outputs found

    Evolutionary mechanisms of long-term genome diversification associated with niche partitioning in marine picocyanobacteria

    Get PDF
    Marine picocyanobacteria of the genera Prochlorococcus and Synechococcus are the most abundant photosynthetic organisms on Earth, an ecological success thought to be linked to the differential partitioning of distinct ecotypes into specific ecological niches. However, the underlying processes that governed the diversification of these microorganisms and the appearance of niche-related phenotypic traits are just starting to be elucidated. Here, by comparing 81 genomes, including 34 new Synechococcus, we explored the evolutionary processes that shaped the genomic diversity of picocyanobacteria. Time-calibration of a core-protein tree showed that gene gain/loss occurred at an unexpectedly low rate between the different lineages, with for instance 5.6 genes gained per million years (My) for the major Synechococcus lineage (sub-cluster 5.1), among which only 0.71/My have been fixed in the long term. Gene content comparisons revealed a number of candidates involved in nutrient adaptation, a large proportion of which are located in genomic islands shared between either closely or more distantly related strains, as identified using an original network construction approach. Interestingly, strains representative of the different ecotypes co-occurring in phosphorus-depleted waters (Synechococcus clades III, WPC1, and sub-cluster 5.3) were shown to display different adaptation strategies to this limitation. In contrast, we found few genes potentially involved in adaptation to temperature when comparing cold and warm thermotypes. Indeed, comparison of core protein sequences highlighted variants specific to cold thermotypes, notably involved in carotenoid biosynthesis and the oxidative stress response, revealing that long-term adaptation to thermal niches relies on amino acid substitutions rather than on gene content variation. Altogether, this study not only deciphers the respective roles of gene gains/losses and sequence variation but also uncovers numerous gene candidates likely involved in niche partitioning of two key members of the marine phytoplankton

    Comparative thermophysiology of marine synechococcus CRD1 strains isolated from different thermal niches in iron-depleted areas

    Get PDF
    Marine Synechococcus cyanobacteria are ubiquitous in the ocean, a feature likely related to their extensive genetic diversity. Amongst the major lineages, clades I and IV preferentially thrive in temperate and cold, nutrient-rich waters, whilst clades II and III prefer warm, nitrogen or phosphorus-depleted waters. The existence of such cold (I/IV) and warm (II/III) thermotypes is corroborated by physiological characterization of representative strains. A fifth clade, CRD1, was recently shown to dominate the Synechococcus community in iron-depleted areas of the world ocean and to encompass three distinct ecologically significant taxonomic units (ESTUs CRD1A-C) occupying different thermal niches, suggesting that distinct thermotypes could also occur within this clade. Here, using comparative thermophysiology of strains representative of these three CRD1 ESTUs we show that the CRD1A strain MITS9220 is a warm thermotype, the CRD1B strain BIOS-U3-1 a cold temperate thermotype, and the CRD1C strain BIOS-E4-1 a warm temperate stenotherm. Curiously, the CRD1B thermotype lacks traits and/or genomic features typical of cold thermotypes. In contrast, we found specific physiological traits of the CRD1 strains compared to their clade I, II, III, and IV counterparts, including a lower growth rate and photosystem II maximal quantum yield at most temperatures and a higher turnover rate of the D1 protein. Together, our data suggests that the CRD1 clade prioritizes adaptation to low-iron conditions over temperature adaptation, even though the occurrence of several CRD1 thermotypes likely explains why the CRD1 clade as a whole occupies most iron-limited waters

    Differential global distribution of marine picocyanobacteria gene clusters reveals distinct niche-related adaptive strategies

    Get PDF
    The ever-increasing number of available microbial genomes and metagenomes provides new opportunities to investigate the links between niche partitioning and genome evolution in the ocean, especially for the abundant and ubiquitous marine picocyanobacteria Prochlorococcus and Synechococcus. Here, by combining metagenome analyses of the Tara Oceans dataset with comparative genomics, including phyletic patterns and genomic context of individual genes from 256 reference genomes, we show that picocyanobacterial communities thriving in different niches possess distinct gene repertoires. We also identify clusters of adjacent genes that display specific distribution patterns in the field (eCAGs) and are thus potentially involved in the same metabolic pathway and may have a key role in niche adaptation. Several eCAGs are likely involved in the uptake or incorporation of complex organic forms of nutrients, such as guanidine, cyanate, cyanide, pyrimidine, or phosphonates, which might be either directly used by cells, for example for the biosynthesis of proteins or DNA, or degraded to inorganic nitrogen and/or phosphorus forms. We also highlight the enrichment of eCAGs involved in polysaccharide capsule biosynthesis in Synechococcus populations thriving in both nitrogen- and phosphorus-depleted areas vs. low-iron (Fe) regions, suggesting that the complexes they encode may be too energy-consuming for picocyanobacteria thriving in the latter areas. In contrast, Prochlorococcus populations thriving in Fe-depleted areas specifically possess an alternative respiratory terminal oxidase, potentially involved in the reduction of Fe(III) to Fe(II). Altogether, this study provides insights into how phytoplankton communities populate oceanic ecosystems, which is relevant to understanding their capacity to respond to ongoing climate change

    Differential global distribution of marine picocyanobacteria gene clusters reveals distinct niche-related adaptive strategies

    Get PDF
    The ever-increasing number of available microbial genomes and metagenomes provides new opportunities to investigate the links between niche partitioning and genome evolution in the ocean, especially for the abundant and ubiquitous marine picocyanobacteria Prochlorococcus and Synechococcus. Here, by combining metagenome analyses of the Tara Oceans dataset with comparative genomics, including phyletic patterns and genomic context of individual genes from 256 reference genomes, we show that picocyanobacterial communities thriving in different niches possess distinct gene repertoires. We also identify clusters of adjacent genes that display specific distribution patterns in the field (eCAGs) and are thus potentially involved in the same metabolic pathway and may have a key role in niche adaptation. Several eCAGs are likely involved in the uptake or incorporation of complex organic forms of nutrients, such as guanidine, cyanate, cyanide, pyrimidine, or phosphonates, which might be either directly used by cells, for example for the biosynthesis of proteins or DNA, or degraded to inorganic nitrogen and/or phosphorus forms. We also highlight the enrichment of eCAGs involved in polysaccharide capsule biosynthesis in Synechococcus populations thriving in both nitrogen- and phosphorus-depleted areas vs. low-iron (Fe) regions, suggesting that the complexes they encode may be too energy-consuming for picocyanobacteria thriving in the latter areas. In contrast, Prochlorococcus populations thriving in Fe-depleted areas specifically possess an alternative respiratory terminal oxidase, potentially involved in the reduction of Fe(III) to Fe(II). Altogether, this study provides insights into how phytoplankton communities populate oceanic ecosystems, which is relevant to understanding their capacity to respond to ongoing climate change

    Cyanorak v2.1 : a scalable information system dedicated to the visualization and expert curation of marine and brackish picocyanobacteria genomes

    Get PDF
    Cyanorak v2.1 (http://www.sb-roscoff.fr/cyanorak) is an information system dedicated to visualizing, comparing and curating the genomes of Prochlorococcus, Synechococcus and Cyanobium, the most abundant photosynthetic microorganisms on Earth. The database encompasses sequences from 97 genomes, covering most of the wide genetic diversity known so far within these groups, and which were split into 25,834 clusters of likely orthologous groups (CLOGs). The user interface gives access to genomic characteristics, accession numbers as well as an interactive map showing strain isolation sites. The main entry to the database is through search for a term (gene name, product, etc.), resulting in a list of CLOGs and individual genes. Each CLOG benefits from a rich functional annotation including EggNOG, EC/K numbers, GO terms, TIGR Roles, custom-designed Cyanorak Roles as well as several protein motif predictions. Cyanorak also displays a phyletic profile, indicating the genotype and pigment type for each CLOG, and a genome viewer (Jbrowse) to visualize additional data on each genome such as predicted operons, genomic islands or transcriptomic data, when available. This information system also includes a BLAST search tool, comparative genomic context as well as various data export options. Altogether, Cyanorak v2.1 constitutes an invaluable, scalable tool for comparative genomics of ecologically relevant marine microorganisms

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    Isolation and Characterization of 15 Polymorphic Microsatellite Loci for the Barau’s Petrel (Pterodroma baraui), an Endangered Endemic of Réunion Island (Indian Ocean)

    No full text
    International audienceFifteen polymorphic microsatellite loci were isolated from the endangered Barau’s Petrel (Pterodroma baraui), endemic to Réunion Island, Indian Ocean, France, facilitating population studies for conservation. In 148 samples from two colonies, the total number of alleles per loci ranged from three to eight, observed heterozygosity ranged between 0.11 and 0.86, and null allele frequency ranged between 0.000 and 0.093. An observed similarity in annealing temperatures across loci and the wide range of fragment sizes facilitated polymerase chain reaction multiplexing and rapid multilocus genotyping. These results will enable further investigation into the genetic diversity, effective population size, and small-scale geographical relationships among populations of this endangered species, encouraging additional conservation initiatives. Received 24 May 2016, accepted 19 August 2016

    Isolation and Characterization of 15 Polymorphic Microsatellite Loci for the Barau’s Petrel (Pterodroma baraui), an Endangered Endemic of Réunion Island (Indian Ocean)

    No full text
    International audienceFifteen polymorphic microsatellite loci were isolated from the endangered Barau’s Petrel (Pterodroma baraui), endemic to Réunion Island, Indian Ocean, France, facilitating population studies for conservation. In 148 samples from two colonies, the total number of alleles per loci ranged from three to eight, observed heterozygosity ranged between 0.11 and 0.86, and null allele frequency ranged between 0.000 and 0.093. An observed similarity in annealing temperatures across loci and the wide range of fragment sizes facilitated polymerase chain reaction multiplexing and rapid multilocus genotyping. These results will enable further investigation into the genetic diversity, effective population size, and small-scale geographical relationships among populations of this endangered species, encouraging additional conservation initiatives. Received 24 May 2016, accepted 19 August 2016

    Isolation and characterisation of 16 polymorphic microsatellite loci for the sooty tern (Onychoprion fuscatus; Sternidae), a super-abundant pan-tropical seabird, including a test of cross-species amplification using two noddies (Anous spp.)

    No full text
    International audienceWe isolate and characterise 16 polymorphic microsatellite loci for the super-abundant, pan-tropical sooty tern (Onychoprion fuscatus), facilitating population genetic studies. In 70 samples from two breeding colonies, the total number of alleles per locus ranged between 5 and 21, observed heterozygosity ranged from 0.143 to 0.942, while estimated null allele frequency varied from −0.131 to 0.273. Polymerase chain reaction (PCR) conditions were optimised across loci, enabling multiplexing and rapid multilocus genotyping. These 16 loci will be useful for future studies of genetic diversity and population structure, and can be used as a proxy through which to assess ecosystem function and change. We additionally test cross-species amplification in the brown (Anous stolidus) and lesser (A. tenuirostris) noddies, illustrating a use of these microsatellites in other related Sternidae species

    Toward robust and high-throughput detection of seed defects in X-ray images via deep learning

    No full text
    Abstract Background The detection of internal defects in seeds via non-destructive imaging techniques is a topic of high interest to optimize the quality of seed lots. In this context, X-ray imaging is especially suited. Recent studies have shown the feasibility of defect detection via deep learning models in 3D tomography images. We demonstrate the possibility of performing such deep learning-based analysis on 2D X-ray radiography for a faster yet robust method via the X-Robustifier pipeline proposed in this article. Results 2D X-ray images of both defective and defect-free seeds were acquired. A deep learning model based on state-of-the-art object detection neural networks is proposed. Specific data augmentation techniques are introduced to compensate for the low ratio of defects and increase the robustness to variation of the physical parameters of the X-ray imaging systems. The seed defects were accurately detected (F1-score >90%), surpassing human performance in computation time and error rates. The robustness of these models against the principal distortions commonly found in actual agro-industrial conditions is demonstrated, in particular, the robustness to physical noise, dimensionality reduction and the presence of seed coating. Conclusion This work provides a full pipeline to automatically detect common defects in seeds via 2D X-ray imaging. The method is illustrated on sugar beet and faba bean and could be efficiently extended to other species via the proposed generic X-ray data processing approach (X-Robustifier). Beyond a simple proof of feasibility, this constitutes important results toward the effective use in the routine of deep learning-based automatic detection of seed defects
    corecore