2,828 research outputs found
Risk and Return for Bioenergy Crops under Alternative Contracting Arrangements
This study evaluated the potential to supply biomass feedstocks under alternative contract arrangements for a northwest Tennessee 2,400 acre grain farm. The four potential types of contracts analyzed in this study offer different levels of biomass price, yield, and production cost risk sharing between the representative farm and the processor.Farm Management, Resource /Energy Economics and Policy,
Reflections on Mira : interactive evaluation in information retrieval
Evaluation in information retrieval (IR) has focussed largely on noninteractive evaluation of text retrieval systems. This is increasingly at odds with how people use modern IR systems: in highly interactive settings to access linked, multimedia information. Furthermore, this approach ignores potential improvements through better interface design. In 1996 the Commission of the European Union Information Technologies Programme, funded a three year working group, Mira, to discuss and advance research in the area of evaluation frameworks for interactive and multimedia IR applications. Led by Keith van Rijsbergen, Steve Draper and myself from Glasgow University, this working group brought together many of the leading researchers in the evaluation domain from both the IR and human computer interaction (HCI) communities. This paper presents my personal view of the main lines of discussion that took place throughout Mira: importing and adapting evaluation techniques from HCI, evaluating at different levels as appropriate, evaluating against different types of relevance and the new challenges that drive the need for rethinking the old evaluation approaches. The paper concludes that we need to consider more varied forms of evaluation to complement engine evaluation
Fundamental Aspects of the ISM Fractality
The ubiquitous clumpy state of the ISM raises a fundamental and open problem
of physics, which is the correct statistical treatment of systems dominated by
long range interactions. A simple solvable hierarchical model is presented
which explains why systems dominated by gravity prefer to adopt a fractal
dimension around 2 or less, like the cold ISM and large scale structures. This
has direct relation with the general transparency, or blackness, of the
Universe.Comment: 6 pages, LaTeX2e, crckapb macro, no figure, uuencoded compressed tar
file. To be published in the proceeedings of the "Dust-Morphology"
conference, Johannesburg, 22-26 January, 1996, D. Block (ed.), (Kluwer
Dordrecht
Consistency between ARPES and STM measurements on SmB
Strongly correlated topological surface states are promising platforms for
next-generation quantum applications, but they remain elusive in real
materials. The correlated Kondo insulator SmB is one of the most promising
candidates, with theoretically predicted heavy Dirac surface states supported
by transport and scanning tunneling microscopy (STM) experiments. However, a
puzzling discrepancy appears between STM and angle-resolved photoemission
(ARPES) experiments on SmB. Although ARPES detects spin-textured surface
states, their velocity is an order of magnitude higher than expected, while the
Dirac point -- the hallmark of any topological system -- can only be inferred
deep within the bulk valence band. A significant challenge is that SmB
lacks a natural cleavage plane, resulting in ordered surface domains limited to
10s of nanometers. Here we use STM to show that surface band bending can shift
energy features by 10s of meV between domains. Starting from our STM spectra,
we simulate the full spectral function as an average over multiple domains with
different surface potentials. Our simulation shows excellent agreement with
ARPES data, and thus resolves the apparent discrepancy between large-area
measurements that average over multiple band-shifted domains and
atomically-resolved measurements within a single domain
Toy amphiphiles on the computer: What can we learn from generic models?
Generic coarse-grained models are designed such that they are (i) simple and
(ii) computationally efficient. They do not aim at representing particular
materials, but classes of materials, hence they can offer insight into
universal properties of these classes. Here we review generic models for
amphiphilic molecules and discuss applications in studies of self-assembling
nanostructures and the local structure of bilayer membranes, i.e. their phases
and their interactions with nanosized inclusions. Special attention is given to
the comparison of simulations with elastic continuum models, which are, in some
sense, generic models on a higher coarse-graining level. In many cases, it is
possible to bridge quantitatively between generic particle models and continuum
models, hence multiscale modeling works on principle. On the other side,
generic simulations can help to interpret experiments by providing information
that is not accessible otherwise.Comment: Invited feature article, to appear in Macromolecular Rapid
Communication
Elliptical Galaxies with Emission Lines from the Sloan Digital Sky Survey
We present the results of 11 elliptical galaxies with strong nebular emission
lines during our study of star formation history along the Hubble sequence.
After removing the dilution from the underlying old stellar populations by use
of stellar population synthesis model, we derive the accurate fluxes of all
emission lines for these objects, which are later classified with emission line
ratios into one Seyfert 2, six LINERs and four HII galaxies. We also identify
one HII galaxy (A1216+04) as a hitherto unknown Wolf-Rayet galaxy from the
presence of the Wolf-Rayet broad bump at 4650 \AA. We propose that the
star-forming activities in elliptical galaxies are triggered by either
galaxy-galaxy interaction or the merging of a small satellite/a massive star
cluster, as already suggested by recent numerical simulations
Propagated infra-slow intrinsic brain activity reorganizes across wake and slow wave sleep
Propagation of slow intrinsic brain activity has been widely observed in electrophysiogical studies of slow wave sleep (SWS). However, in human resting state fMRI (rs-fMRI), intrinsic activity has been understood predominantly in terms of zero-lag temporal synchrony (functional connectivity) within systems known as resting state networks (RSNs). Prior rs-fMRI studies have found that RSNs are generally preserved across wake and sleep. Here, we use a recently developed analysis technique to study propagation of infra-slow intrinsic blood oxygen level dependent (BOLD) signals in normal adults during wake and SWS. This analysis reveals marked changes in propagation patterns in SWS vs. wake. Broadly, ordered propagation is preserved within traditionally defined RSNs but lost between RSNs. Additionally, propagation between cerebral cortex and subcortical structures reverses directions, and intra-cortical propagation becomes reorganized, especially in visual and sensorimotor cortices. These findings show that propagated rs-fMRI activity informs theoretical accounts of the neural functions of sleep
A tachyonic scalar field with mutually interacting components
We investigate the tachyonic cosmological potential in two
different cases of the quasi-exponential expansion of universe and discuss
various forms of interaction between the two components---matter and the
cosmological constant--- of the tachyonic scalar field, which leads to the
viable solutions of their respective energy densities. The distinction among
the interaction forms is shown to appear in the diagnostic. Further,
the role of the high- and low-redshift observations of the Hubble parameter is
discussed to determine the proportionality constants and hence the correct form
of matter--cosmological constant interaction.Comment: 14 page
Lattice-Boltzmann and finite-difference simulations for the permeability for three-dimensional porous media
Numerical micropermeametry is performed on three dimensional porous samples
having a linear size of approximately 3 mm and a resolution of 7.5 m. One
of the samples is a microtomographic image of Fontainebleau sandstone. Two of
the samples are stochastic reconstructions with the same porosity, specific
surface area, and two-point correlation function as the Fontainebleau sample.
The fourth sample is a physical model which mimics the processes of
sedimentation, compaction and diagenesis of Fontainebleau sandstone. The
permeabilities of these samples are determined by numerically solving at low
Reynolds numbers the appropriate Stokes equations in the pore spaces of the
samples. The physical diagenesis model appears to reproduce the permeability of
the real sandstone sample quite accurately, while the permeabilities of the
stochastic reconstructions deviate from the latter by at least an order of
magnitude. This finding confirms earlier qualitative predictions based on local
porosity theory. Two numerical algorithms were used in these simulations. One
is based on the lattice-Boltzmann method, and the other on conventional
finite-difference techniques. The accuracy of these two methods is discussed
and compared, also with experiment.Comment: to appear in: Phys.Rev.E (2002), 32 pages, Latex, 1 Figur
Reconstruction of a Nonminimal Coupling Theory with Scale-invariant Power Spectrum
A nonminimal coupling single scalar field theory, when transformed from
Jordan frame to Einstein frame, can act like a minimal coupling one. Making use
of this property, we investigate how a nonminimal coupling theory with
scale-invariant power spectrum could be reconstructed from its minimal coupling
counterpart, which can be applied in the early universe. Thanks to the coupling
to gravity, the equation of state of our universe for a scale-invariant power
spectrum can be relaxed, and the relation between the parameters in the action
can be obtained. This approach also provides a means to address the Big-Bang
puzzles and anisotropy problem in the nonminimal coupling model within Jordan
frame. Due to the equivalence between the two frames, one may be able to find
models that are free of the horizon, flatness, singularity as well as
anisotropy problems.Comment: 31 pages, 4 figure
- …
