119 research outputs found

    Iron uptake and physiological response of phytoplankton during a mesoscale Southern Ocean Iron enrichment.

    Get PDF
    Iron supply is thought to regulate primary production in high nitrate, low chlorophyll (HNLC) regions of the sea in both the past and the present. A critical aspect of this relationship is acquisition of iron (Fe) by phytoplankton, which occurs through a complex series of extracellular reactions that are influenced by Fe chemistry and speciation. During the first in situ mesoscale Fe-enrichment experiment in the Southern Ocean (Southern Ocean iron release experiment [SOIREE]), we monitored the uptake of Fe by three size classes of plankton and their ensuing physiological response to the Fe enrichment. Rates of Fe uptake from both inorganic Fe (Fe') and organic Fe complexes (FeL) were initially fast, indicative of Fe-limitation. After Fe enrichment phytoplankton down-regulated Fe uptake and optimized physiological performance, but by day 12 they had greatly increased their capacity to acquire Fe from FeL. The increase in Fe uptake from FeL coincided with a sixfold decrease in Fe' that followed the production of Fe-binding organic ligands. Phytoplankton were able to use organically bound Fe at rates sufficient to maintain net growth for more than 42 d. Adaptation to such shifts in Fe chemistry may contribute to bloom longevity in these polar HNLC waters

    the ESC-EORP EURO-ENDO registry

    Get PDF
    Funding: The study has received funding from Abbott Vascular Int. (2011–2021), Amgen Cardiovascular (2009–2018), AstraZeneca (2014–2021), Bayer AG (2009–2018), Boehringer Ingelheim (2009–2019), Boston Scientific (2009–2012), The Bristol Myers Squibb and Pfizer Alliance (2011– 2019), Daiichi Sankyo Europe GmbH (2011–2020), The Alliance Daiichi Sankyo Europe GmbH and Eli Lilly and Company (2014–2017), Edwards (2016–2019), Gedeon Richter Plc. (2014–2016), Menarini Int. Op. (2009–2012), MSD-Merck & Co. (2011–2014), Novartis Pharma AG (2014–2020), ResMed (2014–2016), Sanofi (2009–2011), SERVIER (2009–2021), and Vifor (2019–2022)AIM: Fatality of infective endocarditis (IE) is high worldwide, and its diagnosis remains a challenge. The objective of the present study was to compare the clinical characteristics and outcomes of patients with culture-positive (CPIE) vs. culture-negative IE (CNIE). METHODS AND RESULTS: This was an ancillary analysis of the ESC-EORP EURO-ENDO registry. Overall, 3113 patients who were diagnosed with IE during the study period were included in the present study. Of these, 2590 (83.2%) had CPIE, whereas 523 (16.8%) had CNIE. As many as 1488 (48.1%) patients underwent cardiac surgery during the index hospitalization, 1259 (48.8%) with CPIE and 229 (44.5%) with CNIE. The CNIE was a predictor of 1-year mortality [hazard ratio (HR) 1.28, 95% confidence interval (CI) 1.04-1.56], whereas surgery was significantly associated with survival (HR 0.49, 95% CI 0.41-0.58). The 1-year mortality was significantly higher in CNIE than CPIE patients in the medical subgroup, but it was not significantly different in CNIE vs. CPIE patients who underwent surgery. CONCLUSION: The present analysis of the EURO-ENDO registry confirms a higher long-term mortality in patients with CNIE compared with patients with CPIE. This difference was present in patients receiving medical therapy alone and not in those who underwent surgery, with surgery being associated with reduced mortality. Additional efforts are required both to improve the aetiological diagnosis of IE and identify CNIE cases early before progressive disease potentially contraindicates surgery.publishersversionpublishe

    Association between Regulator of G Protein Signaling 9–2 and Body Weight

    Get PDF
    Regulator of G protein signaling 9–2 (RGS9–2) is a protein that is highly enriched in the striatum, a brain region that mediates motivation, movement and reward responses. We identified a naturally occurring 5 nucleotide deletion polymorphism in the human RGS9 gene and found that the mean body mass index (BMI) of individuals with the deletion was significantly higher than those without. A splicing reporter minigene assay demonstrated that the deletion had the potential to significantly decrease the levels of correctly spliced RGS9 gene product. We measured the weights of rats after virally transduced overexpression of RGS9–2 or the structurally related RGS proteins, RGS7, or RGS11, in the nucleus accumbens (NAc) and observed a reduction in body weight after overexpression of RGS9–2 but not RGS7 or 11. Conversely, we found that the RGS9 knockout mice were heavier than their wild-type littermates and had significantly higher percentages of abdominal fat. The constituent adipocytes were found to have a mean cross-sectional area that was more than double that of corresponding cells from wild-type mice. However, food intake and locomotion were not significantly different between the two strains. These studies with humans, rats and mice implicate RGS9–2 as a factor in regulating body weight.National Institute of Mental Health (U.S.) (R41MH78570 award)National Center for Research Resources (U.S.) (Rhode Island IDeA Network of Biomedical Research Excellence (RI-INBRE) Award P20RR016457-10

    A communal catalogue reveals Earth's multiscale microbial diversity

    Get PDF
    Our growing awareness of the microbial world's importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth's microbial diversity.Peer reviewe

    A communal catalogue reveals Earth’s multiscale microbial diversity

    Get PDF
    Our growing awareness of the microbial world’s importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth’s microbial diversity

    Expanding the diversity of mycobacteriophages: insights into genome architecture and evolution.

    Get PDF
    Mycobacteriophages are viruses that infect mycobacterial hosts such as Mycobacterium smegmatis and Mycobacterium tuberculosis. All mycobacteriophages characterized to date are dsDNA tailed phages, and have either siphoviral or myoviral morphotypes. However, their genetic diversity is considerable, and although sixty-two genomes have been sequenced and comparatively analyzed, these likely represent only a small portion of the diversity of the mycobacteriophage population at large. Here we report the isolation, sequencing and comparative genomic analysis of 18 new mycobacteriophages isolated from geographically distinct locations within the United States. Although no clear correlation between location and genome type can be discerned, these genomes expand our knowledge of mycobacteriophage diversity and enhance our understanding of the roles of mobile elements in viral evolution. Expansion of the number of mycobacteriophages grouped within Cluster A provides insights into the basis of immune specificity in these temperate phages, and we also describe a novel example of apparent immunity theft. The isolation and genomic analysis of bacteriophages by freshman college students provides an example of an authentic research experience for novice scientists
    corecore