142 research outputs found

    Evidence for Color Dichotomy in the Primordial Neptunian Trojan Population

    Get PDF
    In the current model of early Solar System evolution, the stable members of the Jovian and Neptunian Trojan populations were captured into resonance from the leftover reservoir of planetesimals during the outward migration of the giant planets. As a result, both Jovian and Neptunian Trojans share a common origin with the primordial disk population, whose other surviving members constitute today's trans-Neptunian object (TNO) populations. The cold classical TNOs are ultra-red, while the dynamically excited "hot" population of TNOs contains a mixture of ultra-red and blue objects. In contrast, Jovian and Neptunian Trojans are observed to be blue. While the absence of ultra-red Jovian Trojans can be readily explained by the sublimation of volatile material from their surfaces due to the high flux of solar radiation at 5AU, the lack of ultra-red Neptunian Trojans presents both a puzzle and a challenge to formation models. In this work we report the discovery by the Dark Energy Survey (DES) of two new dynamically stable L4 Neptunian Trojans,2013 VX30 and 2014 UU240, both with inclinations i >30 degrees, making them the highest-inclination known stable Neptunian Trojans. We have measured the colors of these and three other dynamically stable Neptunian Trojans previously observed by DES, and find that 2013 VX30 is ultra-red, the first such Neptunian Trojan in its class. As such, 2013 VX30 may be a "missing link" between the Trojan and TNO populations. Using a simulation of the DES TNO detection efficiency, we find that there are 162 +/- 73 Trojans with Hr < 10 at the L4 Lagrange point of Neptune. Moreover, the blue-to-red Neptunian Trojan population ratio should be higher than 17:1. Based on this result, we discuss the possible origin of the ultra-red Neptunian Trojan population and its implications for the formation history of Neptunian Trojans

    Trans-Neptunian objects found in the first four years of the Dark Energy Survey

    Get PDF
    We present a catalog of 316 trans-Neptunian bodies (TNOs) detected from the first four seasons ("Y4" data) of the Dark Energy Survey (DES). The survey covers a contiguous 5000 deg(2) of the southern sky in the grizY optical/NIR filter set, with a typical TNO in this part of the sky being targeted by 25-30 Y4 exposures. This paper focuses on the methods used to detect these objects from the 60,000 Y4 exposures, a process made challenging by the absence of the few-hour repeat observations employed by TNO-optimized surveys. Newly developed techniques include: transient/moving object detection by comparison of single-epoch catalogs to catalogs of "stacked" images; quantified astrometric error from atmospheric turbulence; new software for detecting TNO linkages in a temporally sparse transient catalog, and for estimating the rate of spurious linkages; use of faint stars to determine the detection efficiency versus magnitude in all exposures. Final validation of the reality of linked orbits uses a new "sub-threshold confirmation" test, wherein we demand the object be detectable in a stack of the exposures in which the orbit indicates an object should be present, but was not individually detected. This catalog contains all validated TNOs which were detected on >= 6 unique nights in the Y4 data, and is complete to r less than or similar to 23.3 mag with virtually no dependence on orbital properties for bound TNOs at distance 30 au d 0.3 mag more depth, and arcs of >4 yr for nearly all detections.This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London
    corecore