1,104 research outputs found
Shared and unique patterns of embryo development in extremophile poeciliids
Background: Closely related lineages of livebearing fishes have independently adapted to two extreme environmental factors: toxic hydrogen sulphide (H2S) and perpetual darkness. Previous work has demonstrated in adult specimens that fish from these extreme habitats convergently evolved drastically increased head and offspring size, while cave fish are further characterized by reduced pigmentation and eye size. Here, we traced the development of these (and other) divergent traits in embryos of Poecilia mexicana from benign surface habitats (“surface mollies”) and a sulphidic cave (“cave mollies”), as well as in embryos of the sister taxon, Poecilia sulphuraria from a sulphidic surface spring (“sulphur mollies”). We asked at which points during development changes in the timing of the involved processes (i.e., heterochrony) would be detectible.
Methods and Results: Data were extracted from digital photographs taken of representative embryos for each stage of development and each type of molly. Embryo mass decreased in convergent fashion, but we found patterns of embryonic fat content and ovum/embryo diameter to be divergent among all three types of mollies. The intensity of yellow colouration of the yolk (a proxy for carotenoid content) was significantly lower in cave mollies throughout development. Moreover, while relative head size decreased through development in surface mollies, it increased in both types of extremophile mollies, and eye growth was arrested in mid-stage embryos of cave mollies but not in surface or sulphur mollies.
Conclusion: Our results clearly demonstrate that even among sister taxa convergence in phenotypic traits is not always achieved by the same processes during embryo development. Furthermore, teleost development is crucially dependent on sufficient carotenoid stores in the yolk, and so we discuss how the apparent ability of cave mollies to overcome this carotenoid-dependency may represent another potential mechanism explaining the lack of gene flow between surface and cave mollies
Little evidence for morphological change in a resilient endemic species following the introduction of a novel predator
Human activities, such as species introductions, are dramatically and rapidly altering natural ecological processes and often result in novel selection regimes. To date, we still have a limited understanding of the extent to which such anthropogenic selection may be driving contemporary phenotypic change in natural populations. Here, we test whether the introduction of the piscivorous Nile perch, Lates niloticus, into East Africa's Lake Victoria and nearby lakes coincided with morphological change in one resilient native prey species, the cyprinid fish Rastrineobola argentea. Drawing on prior ecomorphological research, we predicted that this novel predator would select for increased allocation to the caudal region in R. argentea to enhance burst-swimming performance and hence escape ability. To test this prediction, we compared body morphology of R. argentea across space (nine Ugandan lakes differing in Nile perch invasion history) and through time (before and after establishment of Nile perch in Lake Victoria). Spatial comparisons of contemporary populations only partially supported our predictions, with R. argentea from some invaded lakes having larger caudal regions and smaller heads compared to R. argentea from uninvaded lakes. There was no clear evidence of predator-associated change in body shape over time in Lake Victoria. We conclude that R. argentea have not responded to the presence of Nile perch with consistent morphological changes and that other factors are driving observed patterns of body shape variation in R. argentea
Recommended from our members
Analyzing Multidisciplinary Team Effectiveness in an Engineering Environment: A Case Study of the West Point Steel Bridge Design Team
The West Point Steel Bridge Design Team is a group of five undergraduate seniors working to design and build a steel bridge for the annual ASCE Steel Bridge Competition. The purpose of our group’s research is to discover how multidisciplinary teams perform in academically competitive environments. This project provides a unique opportunity in the field of multidisciplinary collaborative work because the team’s success can be objectively measured against this year’s competitors and the team’s performance in previous years. The traditional structure of the West Point team consisted of three-to-five civil engineering majors. This year’s team includes a law and legal studies major and five civil engineers, two of which recently switched from systems engineering.
Past designs have relied heavily on the work of previous years, which has led to stagnant performance at competitions. Our hypothesis is that by entering different perspectives into the group at an early stage, a revolutionary approach will ensue and overall performance will increase. The team did not completely disregard the designs and methods of previous teams, but the reliance on their decision-making process was more heavily scrutinized with the current multidisciplinary team. Our research is not solely limited to competitive performance. We also analyzed the decision-making process of this year’s team in comparison to previous years. While data on decision-making is not readily available, both the faculty advisor and two current team members who served on the team last year were able to provide personal insight into how the teams compare. Ultimately, this research seeks to provide groups in similar academically competitive environments an indication of whether a multidisciplinary composition will provide benefit to their team’s performance.Cockrell School of Engineerin
Extremophile Poeciliidae:multivariate insights into the complexity of speciation along replicated ecological gradients
BackgroundReplicate population pairs that diverge in response to similar selective regimes allow for an investigation of (a) whether phenotypic traits diverge in a similar and predictable fashion, (b) whether there is gradual variation in phenotypic divergence reflecting variation in the strength of natural selection among populations, (c) whether the extent of this divergence is correlated between multiple character suites (i.e., concerted evolution), and (d) whether gradual variation in phenotypic divergence predicts the degree of reproductive isolation, pointing towards a role for adaptation as a driver of (ecological) speciation. Here, we use poeciliid fishes of the genera Gambusia and Poecilia that have repeatedly evolved extremophile lineages able to tolerate high and sustained levels of toxic hydrogen sulfide (H2S) to answer these questions.ResultsWe investigated evolutionary divergence in response to H2S in Gambusia spp. (and to a lesser extent Poecilia spp.) using a multivariate approach considering the interplay of life history, body shape, and population genetics (nuclear miscrosatellites to infer population genetic differentiation as a proxy for reproductive isolation). We uncovered both shared and unique patterns of evolution: most extremophile Gambusia predictably evolved larger heads and offspring size, matching a priori predictions for adaptation to sulfidic waters, while variation in adult life histories was idiosyncratic. When investigating patterns for both genera (Gambusia and Poecilia), we found that divergence in offspring-related life histories and body shape were positively correlated across populations, but evidence for individual-level associations between the two character suites was limited, suggesting that genetic linkage, developmental interdependencies, or pleiotropic effects do not explain patterns of concerted evolution. We further found that phenotypic divergence was positively correlated with both environmental H2S-concentration and neutral genetic differentiation (a proxy for gene flow).ConclusionsOur results suggest that higher toxicity exerts stronger selection, and that divergent selection appears to constrain gene flow, supporting a scenario of ecological speciation. Nonetheless, progress toward ecological speciation was variable, partially reflecting variation in the strength of divergent selection, highlighting the complexity of selective regimes even in natural systems that are seemingly governed by a single, strong selective agent
Predation risk and abiotic habitat parameters affect personality traits in extremophile populations of a neotropical fish (<i style="box-sizing: border-box;">Poecilia vivipara</i>)
Understanding whether and how ambient ecological conditions affect the distribution of personality types within and among populations lies at the heart of research on animal personality. Several studies have focussed on only one agent of divergent selection (or driver of plastic changes in behavior), considering either predation risk or a single abiotic ecological factor. Here, we investigated how an array of abiotic and biotic environmental factors simultaneously shape population differences in boldness, activity in an open‐field test, and sociability/shoaling in the livebearing fish Poecilia vivipara from six ecologically different lagoons in southeastern Brazil. We evaluated the relative contributions of variation in predation risk, water transparency/visibility, salinity (ranging from oligo‐ to hypersaline), and dissolved oxygen. We also investigated the role played by environmental factors for the emergence, strength, and direction of behavioral correlations. Water transparency explained most of the behavioral variation, whereby fish from lagoons with low water transparency were significantly shyer, less active, and shoaled less than fish living under clear water conditions. When we tested additional wild‐caught fish from the same lagoons after acclimating them to homogeneous laboratory conditions, population differences were largely absent, pointing toward behavioral plasticity as a mechanism underlying the observed behavioral differences. Furthermore, we found correlations between personality traits (behavioral syndromes) to vary substantially in strength and direction among populations, with no obvious associations with ecological factors (including predation risk). Altogether, our results suggest that various habitat parameters simultaneously shape the distribution of personality types, with abiotic factors playing a vital (as yet underestimated) role. Furthermore, while predation is often thought to lead to the emergence of behavioral syndromes, our data do not support this assumption
Expression and function of alpha(v)beta(3) and alpha(v)beta(5) integrins in the developing pancreas: roles in the adhesion and migration of putative endocrine progenitor cells.
Cell-cell and cell-matrix interactions play a critical role in tissue morphogenesis and in homeostasis of adult tissues. The integrin family of adhesion receptors regulates cellular interactions with the extracellular matrix, which provides three-dimensional information for tissue organization. It is currently thought that pancreatic islet cells develop from undifferentiated progenitors residing within the ductal epithelium of the fetal pancreas. This process involves cell budding from the duct, migration into the surrounding mesenchyme, differentiation, and clustering into the highly organized islet of Langerhans. Here we report that alpha(v)beta(3) and alpha(v)beta(5), two integrins known to coordinate epithelial cell adhesion and movement, are expressed in pancreatic ductal cells and clusters of undifferentiated cells emerging from the ductal epithelium. We show that expression and function of alpha(v)beta(3) and alpha(v)beta(5) integrins are developmentally regulated during pancreatic islet ontogeny, and mediate adhesion and migration of putative endocrine progenitor cells both in vitro and in vivo in a model of pancreatic islet development. Moreover, we demonstrate the expression of fibronectin and collagen IV in the basal membrane of pancreatic ducts and of cell clusters budding from the ductal epithelium. Conversely, expression of vitronectin marks a population of epithelial cells adjacent to, or emerging from, pancreatic ducts. Thus, these data provide the first evidence for the contribution of integrins alpha(v)beta(3) and alpha(v)beta(5) and their ligands to morphogenetic events in the human endocrine pancreas
Body shape differences in a pair of closely related Malawi cichlids and their hybrids: Effects of genetic variation, phenotypic plasticity, and transgressive segregation
Citation: Husemann, M., Tobler, M., McCauley, C., Ding, B., & Danley, P. D. (2017). Body shape differences in a pair of closely related Malawi cichlids and their hybrids: Effects of genetic variation, phenotypic plasticity, and transgressive segregation. Ecology and Evolution. doi:10.1002/ece3.2823Phenotypic differences may have genetic and plastic components. Here, we investigated the contributions of both for differences in body shape in two species of Lake Malawi cichlids using wild-caught specimens and a common garden experiment. We further hybridized the two species to investigate the mode of gene action influencing body shape differences and to examine the potential for transgressive segregation. We found that body shape differences between the two species observed in the field are maintained after more than 10 generations in a standardized environment. Nonetheless, both species experienced similar changes in the laboratory environment. Our hybrid cross experiment confirmed that substantial variation in body shape appears to be genetically determined. The data further suggest that the underlying mode of gene action is complex and cannot be explained by simple additive or additive-dominance models. Transgressive phenotypes were found in the hybrid generations, as hybrids occupied significantly more morphospace than both parentals combined. Further, the body shapes of transgressive individuals resemble the body shapes observed in other Lake Malawi rock-dwelling genera. Our findings indicate that body shape can respond to selection immediately, through plasticity, and over longer timescales through adaptation. In addition, our results suggest that hybridization may have played an important role in the diversification of Lake Malawi cichlids through creating new phenotypic variation. © 2017 Published by John Wiley & Sons Ltd
Anthropogenic ecosystem fragmentation drives shared and unique patterns of sexual signal divergence among three species of Bahamian mosquitofish
When confronted with similar environmental challenges, different organisms can exhibit dissimilar phenotypic responses. Therefore, understanding patterns of phenotypic divergence for closely related species requires considering distinct evolutionary histories. Here, we investigated how a common form of human-induced environmental alteration, habitat fragmentation, may drive phenotypic divergence among three closely related species of Bahamian mosquitofish (Gambusia spp.). Focusing on one phenotypic trait (male coloration), having a priori predictions of divergence, we tested whether populations persisting in fragmented habitats differed from those inhabiting unfragmented habitats and examined the consistency of the pattern across species. Species exhibited both shared and unique patterns of phenotypic divergence between the two types of habitats, with shared patterns representing the stronger effect. For all species, populations in fragmented habitats had fewer dorsal-fin spots. In contrast, the magnitude and trajectory of divergence in dorsal-fin color, a sexually selected trait, differed among species. We identified fragmentation-mediated increased turbidity as a possible driver of these trait shifts. These results suggest that even closely related species can exhibit diverse phenotypic responses when encountering similar human-mediated selection regimes. This element of unpredictability complicates forecasting the phenotypic responses of wild organisms faced with anthropogenic change - an important component of biological conservation and ecosystem management
Quick divergence but slow convergence during ecotype formation in lake and stream stickleback pairs of variable age
When genetic constraints restrict phenotypic evolution, diversification can be predicted to evolve along so-called lines of least resistance. To address the importance of such constraints and their resolution, studies of parallel phenotypic divergence that differ in their age are valuable. Here, we investigate the parapatric evolution of six lake and stream threespine stickleback systems from Iceland and Switzerland, ranging in age from a few decades to several millennia. Using phenotypic data, we test for parallelism in ecotypic divergence between parapatric lake and stream populations and compare the observed patterns to an ancestral-like marine population. We find strong and consistent phenotypic divergence, both among lake and stream populations and between our freshwater populations and the marine population. Interestingly, ecotypic divergence in low-dimensional phenotype space (i.e. single traits) is rapid and seems to be often completed within 100 years. Yet, the dimensionality of ecotypic divergence was highest in our oldest systems and only there parallel evolution of unrelated ecotypes was strong enough to overwrite phylogenetic contingency. Moreover, the dimensionality of divergence in different systems varies between trait complexes, suggesting different constraints and evolutionary pathways to their resolution among freshwater systems
- …
