101 research outputs found

    Understanding metabolic flux behaviour in whole-cell model output

    Get PDF
    Whole-cell modelling is a newly expanding field that has many applications in lab experiment design and predictive drug testing. Although whole-cell model output contains a wealth of information, it is complex and high dimensional and thus hard to interpret. Here, we present an analysis pipeline that combines machine learning, dimensionality reduction, and network analysis to interpret and visualise metabolic reaction fluxes from a set of single gene knockouts simulated in the Mycoplasma genitalium whole-cell model. We found that the reaction behaviours show trends that correlate with phenotypic classes of the simulation output, highlighting particular cellular subsystems that malfunction after gene knockouts. From a graphical representation of the metabolic network, we saw that there is a set of reactions that can be used as markers of a phenotypic class, showing their importance within the network. Our analysis pipeline can support the understanding of the complexity of in silico cells without detailed knowledge of the constituent parts, which can help to understand the effects of gene knockouts and, as whole-cell models become more widely built and used, aid genome design

    Designing Genomes using Design-Simulate-Test Cycles

    Get PDF
    AbstractIn the future, entire genomes tailored to specific functions and environments could be designed using computational tools. However, computational tools for genome design are currently scarce. Here we present algorithms that enable the use of design-simulate-test cycles for genome design, using genome minimisation as a proof-of-concept. Minimal genomes are ideal for this purpose as they have a simple functional assay, the cell either replicates or not. We used the first (and currently only published) whole-cell model, for the bacteriumMycoplasma genitalium. Our computational design-simulate-test cycles discovered novelin-silicominimal genomes smaller thanJCVI-Syn3.0, a bacteria with, currently, the smallest genome that can be grown in pure culture. In the process, we identified 10 low essentiality genes, 18 high essentiality genes, and produced evidence for at least twoMycoplasma genitalium in-silicominimal genomes. This work brings combined computational and laboratory genome engineering a step closer.</jats:p

    Computer-aided whole-cell design:taking a holistic approach by integrating synthetic with systems biology

    Get PDF
    Computer-aided design for synthetic biology promises to accelerate the rational and robust engineering of biological systems; it requires both detailed and quantitative mathematical and experimental models of the processes to (re)design, and software and tools for genetic engineering and DNA assembly. Ultimately, the increased precision in the design phase will have a dramatic impact on the production of designer cells and organisms with bespoke functions and increased modularity. Computer-aided design strategies require quantitative representations of cells, able to capture multiscale processes and link genotypes to phenotypes. Here, we present a perspective on how whole-cell, multiscale models could transform design-build-test-learn cycles in synthetic biology. We show how these models could significantly aid in the design and learn phases while reducing experimental testing by presenting case studies spanning from genome minimization to cell-free systems, and we discuss several challenges for the realization of our vision. The possibility to describe and build in silico whole-cells offers an opportunity to develop increasingly automatized, precise and accessible computer-aided design tools and strategies throughout novel interdisciplinary collaborations

    Mémento 2 : Résidences 1999-2000

    Get PDF
    This richly illustrated catalogue documents the work of 35 artists who took part in six residencies (including two events - La Cueillette and La Ruche) that took place in 1999 and 2000 at Centre Est-Nord-Est. The centre’s director, F. Michel, describes the nature and purpose of the residencies as well as that of the catalogue : to reflect each participant’s experience. Includes brief comments by the artist on their work and on their stay. Text in French and English. Biographical notes

    A communal catalogue reveals Earth's multiscale microbial diversity

    Get PDF
    Our growing awareness of the microbial world's importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth's microbial diversity.Peer reviewe
    corecore