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Whole-cell modelling is a newly expanding field that has many applications in lab
experiment design and predictive drug testing. Although whole-cell model output
contains a wealth of information, it is complex and high dimensional and thus hard to
interpret. Here, we present an analysis pipeline that combines machine learning,
dimensionality reduction, and network analysis to interpret and visualise metabolic
reaction fluxes from a set of single gene knockouts simulated in the Mycoplasma
genitalium whole-cell model. We found that the reaction behaviours show trends that
correlate with phenotypic classes of the simulation output, highlighting particular cellular
subsystems that malfunction after gene knockouts. From a graphical representation of the
metabolic network, we saw that there is a set of reactions that can be used as markers of a
phenotypic class, showing their importance within the network. Our analysis pipeline can
support the understanding of the complexity of in silico cells without detailed knowledge of
the constituent parts, which can help to understand the effects of gene knockouts and, as
whole-cell models become more widely built and used, aid genome design.
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INTRODUCTION

Recent years have seen a significant increase in the availability of high-throughput biological data
(Gomez-Cabrero et al., 2014). The integration of data frommethods that are becoming cheaper andmore
accessible (Wetterstrand, 2010) reveals interactions between cellular processes (Manzoni et al., 2018),
aiding analysis (Zampieri et al., 2019). Leaps in the scale and capabilities of biological modelling give great
scope for in silico data generation, and though mathematical models cannot fully replicate living cells,
their output can help to understand biologicalmechanisms and inform experimental design to improve in
vivo data collection. Thesemodels can formalise processes at a specific level (e.g., translation) or construct
a trans-omic network of the relationship between different cellular processes (Yugi et al., 2019) and couple
metabolism with gene expression (O’brien et al., 2013).Whole-cell models simulate every cellular process
throughout the life cycle of a cell—only two are published, which model the life cycle of Mycoplasma
genitalium (Karr et al., 2012) and Escherichia coli (Macklin et al., 2020). We focus on theM. genitalium
model. This consists of 28 submodels that use multiple mathematical methods (linear programming and
differential equations) to represent processes such as metabolism and cytokinesis, which integrate
together at every time step.

The model is highly complex, is computationally expensive, and generates huge amounts of time
series data relating to thousands of variables. Interpreting whole-cell model in silico data can be
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difficult, but large-scale analysis is possible. Tools are required to
automatically process and consolidate the output so they can be
viewed and clarified, even by those with little computational
expertise. Existing software tools that visualise whole-cell model
output (Lee et al., 2013; Karr and Pochiraju, 2018) have limited
capacity for processing large and varied datasets—they focus on
visualisation of different output streams, so all analyses are done
by eye, and there is no dimensionality reduction or statistical
methodology.

A whole-cell model, with appropriate analysis software to process
its output, could be a powerful predictive tool for gene editing.
Genetic modifications can be trialled in a model before being
physically made to save time and resources, and whole-cell
models can be coupled with algorithms to predict genetic
modifications intended to produce a chosen phenotype
(Haimovich et al., 2015). Machine learning methods are suitable
for whole-cell model analysis as they are data-driven, so they can
identify correlations and classify data with few assumptions and little
biological knowledge. Metabolism is one of the most widely
modelled cellular subsystems; a stoichiometric matrix is used to
create a constraint-based metabolic model (CBM), which can be
used to predict steady-state fluxes (Bordbar et al., 2014). There have
been applications of machine learning to CBMs, consolidated by
Zampieri (Zampieri et al., 2019). Many have coupled CBMs with
discriminative classifiers (Ho, 1995; Noble, 2006; Yegnanarayana,
2009), to predict or classify gene essentiality, drug side effects, and
protein functions. Others have used unsupervised learning to explore
patterns and pathways inmetabolic systems (You et al., 2006). These
methods of prediction and analysis can be scaled to whole-cell
models. However, whole-cell model output is composed of time
series—contrary to CBM output, which is steady-state rates—and
the labelling of these types of data is becoming a barrier to large-scale
machine learning. As computational power increases and new data
analysis algorithms are developed, the availability of fully labelled
datasets to train and validate models is a limiting factor, and so new
methods are being formed to automatically label data.

Time series data come from all physical systems. Difficulty in
interpreting it arises from the importance of ordering of different
events, meaning that attributes of the data are dependent on each
other in complex ways (Hannan, 2009). Of the various machine
learning methods for time series classification, deep learning has
emerged as the most reliable (Wang et al., 2017; Fawaz et al.,
2019), although accuracies of each method vary with different
datasets. There are also other factors that affect the performance
of an algorithm, such as feature selection, feature engineering,
and data pre-processing.

Many of these methods are supervised, meaning that they
require labelled data in order to train a model. Historically, these
labels would be manually generated by an expert to capture the
ground truth of the problem, but labelling data manually is time-
consuming and unfeasible for huge datasets. A solution to this
problem is weak supervision, which uses weak labels (that do not
express the ground truth) created from a model designed to map
labels onto instances of the data (Zhou, 2018). Snorkel is a
methodology that creates a generative model (a statistical
model of the joint probability of a variable and target label) to
automatically produce weak labels, after collating metrics from

multiple manually defined labelling functions using features from
the data (Ratner et al., 2019; Ratner et al., 2017).

Feature extraction is one of the most important aspects of
building a machine learning model and can be the difference
between failure and success (Domingos, 2012). It is also generally
based on expert knowledge about the physical system (Barandas
et al., 2020), as the most relevant features for analysis will vary
depending on the objective of the machine learning model and
the behaviour of the time series. The issue of time series analysis
of whole-cell model generated metabolic flux is that there is very
little experimental data for dynamic flux in bacterial cells, so the
features that best define the flux behaviour are not intuitive. There
has been previous work on dynamic metabolic fluxes, where
reactions rates were calculated from derivatives of measured
external metabolite concentration, or using dynamic metabolic
flux analysis (DMFA) (Kuriya and Araki, 2020). For DMFA, a
metabolic flux analysis process was used to minimise the sum of
squared residuals between the actual and predicted flux rates.
Then, the DMFA process was used to fit linear functions between
consecutive time points. The methods were computationally
inexpensive, due to the linear fit, and it was found that a
lower number of time points produced a fit with smaller
confidence intervals, suggesting that linear fits are suitable for
approximating metabolic fluxes. Another method used dynamic
flux balance analysis (dFBA) and polynomial fitting to find
functions for reaction rates (Leighty and Antoniewicz, 2011).
Polynomial functions were fitted to experimental data from
metabolite concentrations, which were then differentiated to
find functions for growth rate. These were used as boundaries
for dFBA, enabling accurate simulations of reaction behaviour in
time. Both of these methods deal with relatively smooth data, and
estimation of fluxes from concentration derivatives also involves a
smoothing process, which results in loss of information (Lequeux
et al., 2010). As some of the flux behaviour we see from the M.
genitalium model oscillates significantly in time (as in
Supplementary Figure S1), to analyse this, we must extract
features that can capture some of the variation. Analysis of
oscillatory time series is relatively common, but this is usually
within the context of understanding the physical system—for
example, oscillatory time series decomposition has been carried
on the phase dynamics of well-understood systems (Matsuda and
Komaki, 2017).

It is important to consider that most machine learning
algorithms are treated as black boxes, so results are created
without context. For explanations of the functions of
underlying structure in complex systems, network science can
be used (Gosak et al., 2018). Network science is an area that has
long been applied to the analysis of biological systems: protein
interactions, metabolic reactions, and transcription regulation
can be formalised as networks, leading to discoveries regarding
properties of their interactions (Barabasi and Oltvai, 2004).
Network structure has been used to predict metabolic
functions and find pathways for metabolite flow (Stelling et al.,
2002) and to find control loops within gene networks (Wong
et al., 2012).

The complexity of genomic interactions, even in cells as small
as M. genitalium, is such that there is not a clear path from the
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genome after knockouts to the end phenotype. Even with
functional annotations, the genomic context of the genome
(which will be several hundred genes after a single gene
knockout) cannot be disregarded, as there may be redundancy
in the genome, or unprecedented gene product interactions. The
removed gene/s will not tell the full story, but zooming out to
examine a large set of different genotypes through their metabolic
fluxes can show us the trends across the full set of knockouts,
providing a different angle than that of focusing on a single gene.

Here, we present a novel analysis pipeline that combines
whole-cell model simulations of wild-type and gene knockout
cells with time series classification and network analysis. The
main steps include automatic labelling of metabolic fluxes as
normal or abnormal (where normality refers to the behaviour of a
reaction flux from a knockout simulation with respect to the
behaviour of that reaction in a wild-type simulation),
dimensionality reduction of the reactions for visualisation, and
network analysis of the reactions. This analysis—looking at
intermediate steps that connect genotype to phenotype—aims
to increase our understanding of cellular processes and provides
foundations for in silico genome design.

MATERIALS AND METHODS

Description of the Data
We began with two sets of data—one to train the machine
learning models and one to apply them and analyse the
output. The simulations were generated from running the M.
genitalium whole-cell model on a supercomputer cluster, with
each gene singly knocked out. The model requires 8 GB of RAM
for each simulation and was run on BlueGem, a 900-core
supercomputer at the University of Bristol, using MATLAB
R2013b. It is available at https://github.com/CovertLab/
WholeCell. The raw metabolic flux time series was then
converted to Pandas DataFrames and stored in a pickle format
to save space. The training set consisted of time series of reaction
fluxes for three repetitions of every possible single knockout from
the M. genitalium model, of which there are 359, plus 200 wild-
type simulations. Each time series is 50,000 s in total, and we used
the time series of 279 reactions from each simulation. There was
1,270 simulations in total. The dataset that we applied to the
analysis consisted of 10 repetitions of all of the single gene

knockouts, with the same reaction time series, and so this
dataset has 3,411 simulations in total. One knockout, MG_
469, consistently caused the model to crash and the
simulations to terminate, and a few simulations did not
complete due to errors on the supercomputer cluster. The
metabolic flux data are about 200 Mb per simulation after
processing, so the training dataset (three repetitions of each
single knockout) is ≈200 Gb, and the analysis dataset ≈700 Gb.
More repetitions of each knockout would make for a more
accurate dataset, but due to the size of the data, we were
limited by storage space.

Labelling
Snorkel is a system that takes input data points and manually
defined labelling functions and collates these into a generative
model that outputs probabilistic labels for the data. The labelling
functions will produce noisy labels, which are then used as weak
supervision for a stronger predictive function by combining three
measures—the labelling propensity (whether the data point has
been assigned a label or not), the accuracy of each label, and the
correlations of the multiple labelling functions. The label matrix
generated from these measures is then used to define an
exponential distribution that can predict probabilistic training
labels. The normality of 10 reactions was manually labelled by
visual inspection of the time series, comparing features of the
plots such as smoothness and linearity with wild-type time series
from the same reactions (Correll et al., 2012; Correll and Heer,
2017), and used to validate Snorkel’s weak labels, the accuracies of
which are shown in Table 1. The algorithm was implemented
using the Snorkel library in Python.

The manual labelling was done based on the phenotypic
classes defined by the original publication of the M. genitalium
model, which used the production capacity of various features
from the model output to classify a simulation (Karr et al., 2012).
The combinations of these features that contribute to a particular
class are detailed in Table 2, and the simulations used in the
analysis dataset were all labelled by manual inspection of the
model output.

TABLE 1 | Accuracies of Snorkel’s weak labels for 10 manually labelled reactions.

Accuracy

Aas4 99.6%
AceE 99.1%
Adk3 90.2%
Apts_Asp 95.8%
Apts_Trp 83.1%
ArcC 77.8%
DcdK 97.0%
Pyk_DADP 85.0%
Pyl_GDP 69.2%
TX_AROP22 94.3%

TABLE 2 | Manual labels of phenotypic classes (shown on the left-hand column)
and their corresponding combinations of substance production (the column
headings).

DNA RNA Protein Growth Division

Metabolic × × × × ×
RNA ✓ × × × ×
Protein ✓ ✓ × × ×
Slow growing ✓ ✓ ✓ ✓ ×
DNA × ✓ ✓ ✓ ×
Septum ✓ ✓ ✓ ✓ ×
Non-essential ✓ ✓ ✓ ✓ ✓

Note. A cross means that there is no active production of that substance in the case of
DNA, RNA, and protein; and in the case of growth and division, these things do not
occur. A tick means that opposite—so, for example, in a simulation classified as “non-
essential,” we see production of DNA, RNA, and protein, as well as both growth and
division; and in a simulation classified as “metabolic,” we see none of these things. In the
case of the “slow growing” phenotype, division begins at the end of the simulation but
does not complete.
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Training and Tuning the Neural Networks
Once the data are fully labelled, a standard discriminative model can
be trained for classification. In this case, we chose to use a neural
network, implemented with the Python library tensorflow (version
2.0.0-rc0). With the use of the data labelled by the generative model,
a neural network was trained for each reaction. Each neural network
had four hidden layers and used a softmax activator function and
Adam optimiser. Different combinations of hyperparameters (epoch
size, batch size, and number of nodes in a layer) were tested, so that
an optimal combination could be used for each network to find the
highest accuracy. Generally, the combination of hyperparameters
can have a significant effect on the neural network output, so these
factors are important. Epoch size refers to the number of rounds of
back-propagation performed by the network, batch size means the
number of training data samples input before the model updates,
and number of nodes refers to number of nodes of the network in
each hidden layer. Epoch size will leave the data underfitted if too
small and overfitted if too large; batch size is generally optimised for
processing time (in that larger batch sizes will train the network
faster, whereas a smaller batch size may help the weights converge
faster); and the number of nodes is usually taken to be some number
between the amount of input nodes and the amount of output nodes.
There is no setmethod for selecting hyperparameters for neural nets,
and it is frequently taken to be a trial-and-error process (Sarle, 1994).
We tuned our neural networks via a brute-force approach, where
different parameters within a set range were trialled to increase the
accuracy of the network. Epoch size was kept relatively low; as after
some testing, many of the neural networks converged to accuracies
> 95% after only five epochs, and so we tested epoch values of 5, 10,
and 15. Batch sizes of 50, 100, and 150 used, and node numbers of
750, 1,500, and 2,250 were tried, where we selected the network with
hyperparameters that gave the highest accuracy. The reactions from
neural networks that gave accuracy of less than 70% were removed,
leaving 267 reactions and neural networks with a mean accuracy of
93.6%. K-fold cross-validation was performed to check if overfitting
was an issue, using the sklearn Python library (version 0.21.3), with
10-fold. The accuracies across the folds are shown in Supplementary
Figure S2 and averaged across the folds for each reaction. As the
averaged accuracies across the folds do not differ significantly from
accuracies recorded, we conclude that the data have not been
overfitted.

Network Formation and Features
After the neural networks were trained and fluxes classified across
the dataset, we turned to network analysis. With the
stoichiometric matrix for the metabolism, S, taken from the
M. genitalium model knowledge base, we reduced it to its
binary format (as we were focusing on the topology of the
metabolic network rather than the exact stoichiometry) to
form a metabolic adjacency matrix A from the relationship

A � StS, (1)

which can create a widely used graphical representation of a
metabolic network, where the reactions form nodes of the graph,
and the substrates form edges that connect them (Palsson, 2006).
We were able to find a set of driver nodes (the set of nodes that

must be controlled in order to fully control the network) using the
maximal_matching function in Python’s NetworkX library
(version 2.4). This function takes an undirected graph and
greedily finds a matching by iterating over pairs of edges in
the graph to see whether the node that connects them is in the
matching. The pathways associated with the driver nodes were
found via the Enzyme Commission numbers from the
supplementary material of the M. genitalium model (Karr
et al., 2012), where the Python library bioservices was used to
look up the pathways for each EC number from Kyoto
Encyclopedia of Genes and Genomes (KEGG).

The metabolic sub-networks were plotted in python-igraph
where, for each class across the dataset, the affected reactions are
shown as a sub-network with a colour gradient corresponding to
how frequently that reaction behaves abnormally. A threshold for
“noisy” reactions was found from wild-type simulations, where
an exponential distribution was fitted to the frequencies of
reactions classified as behaving abnormally by the neural
networks. For a wild-type simulation, in theory, all reactions
should be classified as normal, but as the M. genitalium model is
stochastic, there can be a range of different behaviours, depending
on the initial conditions of the simulation and other random
processes (e.g., radiation and DNA damage). The interval under
which 95% of the data were contained was found, and this value
was selected as a rate parameter, which was used as the threshold
of significance for whether a reaction was considered to be
behaving abnormally consistently.

We then performed principal component analysis (PCA)
using the SciPy library (version 1.3.1) to reduce the data to
two dimensions and plot the data on a scatter plot using
Seaborn (version 0.9.0). After the reduction, 84% of the
variance in the full dimensions of the data was conserved, so
there was no significant information loss after this operation.
After having found the driver nodes, we trained a linear support
vector machine (SVM) for the normality of each one to separate
the data points on the PCA plot, selecting those that could divide
the data with > 95% accuracy. For the SVM, we used the sklearn
Python library (version 0.21.3).

RESULTS

A schematic of our pipeline is shown in Figure 1, with the main
steps of weak labelling, neural network classification, and network
analysis shown. We began with two datasets: one for training and
testing the neural network and one for analysis of single
knockouts. The training dataset contained three repetitions of
all 359 possible single gene knockouts, plus 200 wild-type
simulations, giving 1,270 simulations in total. Each simulation
had 279 dynamic reactions out of the total 645 (over half of the
reactions were consistently at steady state throughout the cell life
cycle, which does not require a complex classifier to identify),
with up to 50,000 timesteps. Although the exact steady-state
values may vary across simulations, we focused specifically on the
reactions that have behaviours that change in time, assuming that
they are more likely to show the most sensitive components of the
metabolism. Given that metabolic networks are formulated with
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FIGURE 1 | Step-by-step workflow of the analysis pipeline, beginning with the metabolic fluxes from the whole-cell model output. Steps 1–4 are applied to a
training dataset of gene knockout simulations, where the end result is a trained neural network for each reaction. (1) For each reaction flux time series, four features are
extracted and reduced to two dimensions through principal component analysis (PCA). (2, 3) The extrema of these data are used to define boundaries for normal and
abnormal behaviours, which are then used to create a generative function to map labels onto the reactions. (4) Neural networks are trained using these labelled data
to classify reactions as normal or abnormal. Steps 5–8 are applied to a separate analysis dataset of gene knockout simulations. (5) The neural networks are used to
classify the analysis dataset and create a flux profile for each simulation. (6) The flux profiles are reduced to two dimensions and plotted. (7, 8) Network analysis of the
reactions reveals nodes that control the metabolic network and correlate with different phenotypes after gene knockouts.

Frontiers in Molecular Biosciences | www.frontiersin.org December 2021 | Volume 8 | Article 7320795

Landon et al. Understanding Metabolic Behaviour

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


steady-state behaviours in mind, reactions that deviate from this
seemed to be the most interesting to analyse, with regard to
understanding the cell phenotype. The analysis dataset consisted
of 10 repetitions of the 359 gene knockouts, with the same
number of reactions and timesteps, totalling 3,411 simulations.
There are some gaps in the dataset, as some files were corrupted,
and one knockout consistently caused the model to crash.

The M. genitalium whole-cell model has drastically varying
fluxes through different reactions (see Supplementary Figure
S1). Furthermore, it is not always clear how the removal of a
particular gene will affect cellular processes or cell viability. For
each reaction, we presume there is a range of normal behaviours
over which the cell can produce all necessary compounds for
division, and dynamics outside of that range result in negative
effects (e.g., build-up or depletion of certain metabolites) that
affect the rest of metabolism and disrupt other processes,
potentially causing cell death. The normality of reaction fluxes
in a simulation can be used to understand the effects of gene
knockouts through the cell cycle, and howmetabolism is affected.
This can help with predicting and explaining the effects of gene
knockouts and looking at patterns across different simulations.
We visualised the reaction flux behaviour across our entire
dataset, and we looked at the topology of the metabolic
network (in particular, how the network can be controlled by
input nodes) to help explain the role of different reactions.

Implementation of Snorkel for Weak
Labelling
Manual labelling was impractical with such a large dataset, so we
implemented Snorkel, which has previously been shown to
perform as accurately as hand labelling (Ratner et al., 2019).
There are other methods of weak supervision available, but they
use either inaccurate labels (which still require a manually
labelled dataset) or locate incorrect labels within a previously
labelled dataset Northcutt et al. (2019). Inaccurate labels are those
that are known to be incorrect, and imprecise labels are those that
contain some high level information about the data, but do not
show the ground truth. Snorkel is the main approach that uses
imprecise labels for time series (Robinson et al., 2020), as other
approaches have used imprecise labels for semantic similarity in
words, which is not applicable to time series (Saunshi et al., 2019).

Snorkel requires manually defined labelling functions, which
are an important heuristic for the basis of the methodology. The
underlying patterns are used to form probabilistic labels, so
together they need to capture some approximation of ground
truth. In this case, we created labelling functions by amalgamating
four key features extracted from each reaction flux time series.
There is very little information in the literature about what
normal behaviours for metabolic fluxes should look like, so we
must make an assessment of the most important features from
time series inspection.

As Snorkel is designed to work with noisy and sometimes
conflicting labels, we used a simple method to define the labelling
functions. A linear regression function was fitted to each time
series; and the intercept, gradient, coefficient of determination
(R2), and mean squared error were found (Figure 2). These

captured the variation observed and shown in Supplementary
Figure S1: smoothness/oscillation in the mean squared error, the
increasing or decreasing nature in the gradient, and the linearity
in the coefficient of determination. These were features that we
chose based on manual inspection of the reaction behaviour, with
the intent of describing the important aspects of the time series, so
in choosing them we aimed to capture the most relevant
information. Fitting non-linear functions to the data may have
provided more accurate labelling functions, but due to the
complexity and variety of the time series, this would have
required a many visual analyses and likely a broad set of
different non-linear functions.

The results were reduced through PCA (where 82.9% of the
variance was conserved across the reactions), leaving a two-
dimensional space over which boundaries of different thresholds
could be drawn, which was much simpler and faster to visualise
and compute in two dimensions than it would have been before the
dimensionality reduction (Figure 2). Using two dimensions
allowed us to easily verify visually the efficacy of this labelling
method while approximately dividing the data for the weak
labelling. Loosely, the boundaries were defined by the extrema
of the wild-type simulations, which were taken to be the edges of
normal behaviours for each reaction (Figure 2). Any simulations
outside these boundaries were classified as abnormal. Other shapes
could also be used at this stage.

Three different boundaries were defined for different labelling
schemes, as different confidence thresholds performed better or
worse depending on the reaction. Boundaries at the extrema and
then at 99% and at 95% were selected as the three labelling
functions after comparison of their performance and then
combined to form the generative model. We then
implemented Snorkel, leaving us with 1,270 weakly labelled
time series for each reaction. Ten reactions were manually
labelled as normal or abnormal to test the accuracy of
Snorkel’s labels, where characteristics like smoothness or the
increasing or decreasing nature of the time series were used as
comparison features to decide whether the behaviour of a
reaction was normal or abnormal. The majority of the Snorkel
labels gave over 90% accuracy, with the lowest at 69.2% (see the
Materials and Methods and Table 1).

Training of Neural Networks and Flux
Profiling
The Snorkel results were used to train a neural network for each
reaction, as artificial neural networks are some of the most
effective classification algorithms (Caruana and Niculescu-
Mizil, 2006; Raczko and Zagajewski, 2017). Neural networks
consist of layers of nodes, representing artificial neurons with
assigned weighted connections. The weights are adjusted through
rounds of backpropagation or epochs until they predict correct
classes for different types of input (Kröse et al., 1993).

Once trained and assessed for accuracy using k-fold cross-
validation to verify that they had not been overfitted (see the
Materials and Methods section and Supplementary Figure S2),
the neural networks were used to classify the normality of
reactions for the analysis dataset. From this, we generated a “flux
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profile” for each simulation: a binary string for each reaction within
that simulation, where 0 means normal behaviours and 1 means
abnormal. Reactions for neural networks with less than 70%
accuracy were removed (of which there were 12 in total), leaving
267 reactions with a mean accuracy of 93.6%. We applied PCA to
reduce the flux profiles to two dimensions while retaining most of
the variance and visualised, as shown in Figure 3. Each point is the
flux profile of a simulation, and the principal components
correspond to the reduced dimensions of the reaction flux
profiles. As PCA preserves global and pairwise distances between
all data points, unlike other dimensionality reduction processes that
focus on local distance (such as t-Distributed Stochastic Neighbor
Embedding (Van der Maaten and Hinton, 2008) and Uniform
Manifold Approximation and Projection (McInnes et al., 2018)),
this enables us to see not only the relationship between data points
but the relationship between the different clusters, leading to clearer
interpretability.

The analysis dataset simulations were previously hand-
labelled by phenotype according to differences in cell
behaviours of the simulation output. The labelling classes were
non-essential, DNA disruption, RNA disruption, metabolic
disruption, protein disruption, or septum disruption (Rees-
Garbutt et al., 2020)—see the Materials and Methods for
details. The non-essential class is defined by whether the cell
divides or not, in keeping with current definitions of gene
essentiality (Zhang and Zhang, 2008), and the other classes are
defined by what is indicated by the output data to be the root
cause of cell death.

In Figure 3, several clusters of flux profiles are visible. To
validate their significance, we coloured the flux profile points
according to manual labels of the phenotype that has occurred
after the knockout; it can be seen (Figure 3) that these clusters
correspond to the manually defined phenotypic classes. This
suggests (intuitively) that different sets of reactions behave
abnormally for each different class of phenotype, with
different scales in the proportion of reactions affected, which
will separate the different classes in the PCA space. We expect the
majority of reactions in a simulation labelled as non-essential to
be classified as normal and the non-essential simulations to be
clustered together in the PCA space, as their flux profiles will be
similar. Then, for simulations with greater disruption (e.g., the
metabolic phenotypic class, where there is no growth and no
DNA, RNA, or protein is created (see theMaterials and Methods
section), where many reactions are behaving abnormally), these
will be placed much further away from the non-essential cluster.

Analysis and Biological Context Within the
Metabolic Network
The clustering analysis is useful to show the big picture across the
entire dataset but does not suggest much biological insight that
could be applied to lab experiments. In order to make sense of the
data in a way that can be used in an experiment, we need to
understand these results at the scale of groups of genes or
reactions. To ascribe biological meaning to trends seen across

FIGURE 2 | Method of feature extraction and normality classification shown graphically. The features shown in plot (A) were taken, and principal component
analysis (PCA) was applied for each reaction flux in each simulation across the dataset to create plot (B), retaining 82.9% of the variance. The wild-type simulations are
shown in blue, and then three boundaries are shown (extrema, 99% confidence intervals, and 95% confidence intervals), which are used to form three labelling schemes.

FIGURE 3 | Principal component analysis (PCA) plot of the flux profiles
(binary strings of normal vs. abnormal classifications for each flux in a
simulation) from 3,411 gene knockout simulations, reduced to two
dimensions (while retaining 84.5% of the variance) and then shown in
different colours that correspond to manual labels. The classes are defined by
the presumed root cause of lack of cell division; or if the cell divides, the
simulation is classified as non-essential.
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the dataset, we analysed the topology of the metabolic network, as
this is a representation of the relationships between different
reactions, and so we can see how it is affected by reactions
behaving abnormally after knockouts. It has been shown that
the modularity of the E. coli metabolic network corresponds to
metabolic functions (Ravasz et al., 2002), and so, from a graphical
perspective, we aimed to explain some of the biology behind the
phenotypic classes and the flux profiles. The M. genitalium
metabolic network is significantly smaller than many bacterial
metabolisms (645 reactions vs., e.g., 2,382 in E. coli (Feist et al.,
2007)), due to its genome size—however, analysis is not trivial.
We used a graphical representation of the network, where each
reaction is a node, and substrates that connect reactions are edges,
as in the stoichiometric matrix of the metabolism in the
knowledge base of the M. genitalium model. We visualised the
reactions affected across each class in individual graphs, shown in
Supplementary Figure S3.

There are multiple ways to gauge the importance of a node
within a network. Most commonly used are centrality measures
(Freeman, 1977), but for dynamic networks, we can focus on the
control of the network via the nodes. From the graphical
representation, we used a maximal matching algorithm to find
driver nodes. Driver nodes are the set of nodes in the network that
need to be managed in order to have full control over the system,
which can be found for both directed and undirected networks
(Liu et al., 2011; Nacher et al., 2019)—therefore, in terms of input
into the metabolism and flow through the metabolic pathways,
their behaviours affect other reactions downstream, and they
could be indicators of phenotypes after gene knockouts. The
driver nodes of the network are shown and named in
Supplementary Figure S4. For each driver node, the pathways
associated with that reaction were found from KEGG (Kanehisa
and Goto, 2002) or (if there was no annotation for that reaction)

the pathways associated with reactions that were one degree away
from the driver, as shown in Table 3.

Metabolic networks are known to be robust (Smart et al., 2008;
Holme, 2011), so many reactions can be individually removed
without causing adverse effects. However, within M. genitalium
metabolism, very few metabolites are organically synthesised
(Dybvig and Voelker, 1996). Transport reactions for essential
substrates such as amino acids are far more important than they
might be in a larger cell that has the capabilities to synthesise
these things itself. Within the metabolic network for the most
widely used constraint-based E. coli model [iAF1260 (Feist et al.,
2007)], 75% of the driver nodes are transport reactions, compared
with 95% in the M. genitalium metabolic network.

We found several driver nodes that can be individually used as
features to divide the data into separate classes (referred to in the text
using their reaction identifiers from the model). For all driver nodes,
we modelled a linear SVM across the 2D data of the analysis dataset.
We then selected those that could separate the data into normal vs.
abnormal behaviours with over 95% accuracy as good and simple
indicators of metabolic behaviours, shown in Figure 4. Of the driver
nodes, 83% could linearly separate the data with greater than 95%
accuracy (listed in Supplementary Table S4), compared with only
60% of the non-driver nodes, demonstrating their significance.
Additionally, we can use individual driver nodes to mark
phenotypic classes—normal behaviours for TX_NAC, the
reaction that transports nicotinamide into the cell, correlate
strongly with the simulations classified as non-essential, with a
phi coefficient [a measure of correlation between binary variables
(Ekström, 2011)] of 92%. Behaviours of TX_RIBFLV can split the
dataset into the classes where we see growth (non-essential, septum,
and DNA phenotypes) and the classes where there is no growth
(metabolic, RNA, and protein phenotypes) with a phi coefficient of
95%. Equally, we can see that abnormal behaviours for Upp

TABLE 3 | List of all of the driver nodes, whether they can linearly separate different phenotypic classes in the PCA space, and their associated pathways (if available).

Driver Pathways Linearly separable

TX_CO2 Glycolysis, TCA cycle, pyruvate metabolism, carbon metabolism Yes
TX_COA Glycolysis, TCA cycle, pyruvate metabolism, carbonmetabolism, pantothenate and CoA biosynthesis, methanemetabolism Yes
TXPYDX Vitamin B6 pathway Yes
TX_ACAL Pentose phosphate pathway No
TX_CAP Purine metabolism, carbon metabolism No
TX_DDCA Glycerolipid metabolism n/a
TX_FOR One carbon pool by folate, carbon metabolism n/a
TX_H2O2 n/a Yes
TX_HDCA Glycerolipid metabolism Yes
TX_HDCEA Glycerolipid metabolism Yes
TX_LIPOATE n/a Yes
TX_NAC Nicotinate and nicotinamide metabolism Yes
TX_O2 Purine metabolism, pyrimidine metabolism Yes
TX_OA Pyruvate metabolism, carbon metabolism, methane metabolism No
TX_OCDCA Glycerolipid metabolism Yes
TX_OCDCEA Glycerolipid metabolism Yes
TX_RIBFLV Riboflavin metabolism, biosynthesis of secondary metabolites Yes
TX_THF One carbon pool by folate, folate biosynthesis Yes
TX_TTDCA Glycerolipid metabolism n/a
TX_TTDCEA Glycerolipid metabolism n/a
Upp Pyrimidine metabolism Yes

Note. PCA, principal component analysis; TCA, tricarboxylic acid.
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(dephosphorylation of uracil) are strongly indicative of a metabolic
phenotype and can be used as a feature to separate metabolic
disruption phenotypes from other types of phenotype, with a phi
coefficient of 97%. Overall, the driver node analysis showed that it is
possible to identify important reactions within the network that
correlate with certain cell behaviours, meaning that we can focus on
these to understand the end phenotype rather than the entire set of
reactions.

DISCUSSION

We have shown multiple analysis methods that take a large
high-dimensional dataset and distill it into visualisations that

are easy to interpret. The pipeline of weak labelling followed
by neural network classification is applicable to any system
that outputs time series, although the features used for the
initial labelled schema may have to be changed, according to
what the researcher intends to look for, and the type of time
series that is being analysed. As discussed previously, it is
particularly useful for where “normal” behaviours for a system
is not well defined, and the mechanisms that underlie the
system cannot be distilled into a form that is understood. We
have shown that it is applicable for black-box models, but it
could also be used for data from complex physical systems
where we do not understand the fundamental structure, such
as meteorological phenomena. Additionally, the driver node
analysis is applicable to any system where there is input,

FIGURE 4 | Scatter plots of all flux profiles reduced to a 2D feature space. On the left [plots (A,C, E)], each point is labelled with the behaviour (normal or abnormal)
of a single reaction that is a driver node. The lines shown decision boundaries for support vector machines (SVMs); models that form a hyperplane to linearly separate
different classes of data, where in this case the classes will be flux profiles where the specified reaction behaves normally, and flux profiles where the specified reaction
behaves abnormally. The reactions are referred to using their identifiers that are used in themodel. On the right [plots (B, D, F)], each point shows themanual label of
the phenotypic classes that correlate with the behaviour of the reactions on the left—the simulations that show normal behaviours of TX_NAC have a 92%correlation with
those that are manually classified as non-essential; those that show normal behaviours of TX_RIBFLV show a 95% correlation with those that are manually classified as
non-essential, DNA, or septum phenotypes (which all show cell growth), and those that show abnormal behaviours for Upp show a 97% correlation with those that are
manually classified as metabolic.
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output, and internal structure, as it can highlight the most
important parts of a high-dimensional system.

The processing of complex data is imperative to understand
whole-cell model output, and this method demonstrates how the
behaviours of specific reactions can be used as a marker of a
particular phenotypic class and their importance to the
corresponding cellular process.

Understanding the effects of single gene knockouts is a
deceptively difficult task, as the domino effect of gene removal
can cause large changes in the behaviour of a cell through its
life cycle. Visualising and analysing thousands of time series is
a challenge faced by many branches of research. These two
problems come together in the context of whole-cell models.
Using Snorkel and neural networks, we have been able to
classify metabolic fluxes as normal or abnormal and visualise
them in two dimensions, meaning that the dataset separates
into groups that can be interpreted. Whole-cell model data
must be understood in the context of controllable biological
mechanisms to be relevant to genome design: in order to use
knowledge gained from modelling in real cells, we must
understand the internal operations as well as the output.
The flux behaviour across different gene knockouts, and in
particular the driver nodes, can show the links between
genotype and phenotype, plus unprecedented effects that a
gene may have on reactions seemingly unrelated to its
functional annotation, on a scale that is only possible in a
whole-cell model. As this analysis gives an overview of the
entire metabolism, we can approach the problem of
understanding gene knockouts in a way that includes the
genomic context of the remaining genes and the behaviour
of their associated reactions, rather than examining the
phenotype with regard to the single gene that has been
removed.

The driver nodes can also give insight into the essentiality
of Mycoplasma functions. Most of the driver reactions are
not associated with annotated genes, as many transporter
proteins are putative—however, given that M. genitalium
synthesises very few compounds and gains most from its
surrounding media, this is an important knowledge gap. The
external media for Mycoplasma culture is generally
undefined rich media, so knowledge of exactly which of
the media components are essential for growth would be
valuable for lab use and simplify Mycoplasma production
(Gaspari et al., 2020). This may also help with linking un-
annotated genes with modelled functions, leading to better
understanding of theM. genitalium genome. For example, an
essential protein in JCVI-syn3A [one of the first synthetic
organisms; designed to function as a minimal cell (Breuer
et al., 2019)] has recently been classified as a riboflavin
transporter protein, showing that vitamin transport is an
essential function for a minimal organism (Zhang et al.,
2021). As M. genitalium does not synthesise riboflavin, this
suggests that one of its un-annotated genes must be a
riboflavin transporter. As more wet lab work is done with
M. genitalium, it will be interesting to compare it to the
model results and the importance of different driver nodes.
The essentiality of similar transport reactions could also be

looked at in other organisms, as these results may be
applicable to other Mycoplasmas.

For genome design, there has long been an idea of
“modularity” in cells, at different scales and abstractions
(Papin et al., 2004). Cellular subsystems that use a unique set
of molecules and rules to perform a function such as DNA
replication or glycolysis use chemical specificity to keep their
processes separate from other functional modules (Hartwell et al.,
1999). It has been proposed recently that the future of genome
design may be in minimal cells, combined with different
functional modules to create cells for specific purposes
(Gibson, 2014). This would require a detailed understanding
of not only how a genome maps to its phenotype and how the
genes themselves can form functional modules but also
concerning the ways in which these modules interact. This is
one of the main advantages of using a whole-cell model rather
than a constraint-based model—from observing the behaviour of
reactions, we can see how other mechanisms in the cell (e.g., DNA
production) are affected, which we would not in a constraint-
based model.

The metabolism submodel in the M. genitalium model is a
central hub of activity and an integral stepping stone for
substance transfer between cellular processes. Although
internal mechanisms and local rules for the model were
gathered from experimental data and are biologically valid, the
complexity that arises from so many parameters being integrated
together means that the model has to be treated as a black box.
Analysing the behaviour of the model could ultimately lead to
better biological understanding of the connections between
cellular processes. If the way that two processes are coupled
together in silico in the whole-cell model yields output that
matches experimental data, this can help to develop insight
into how these processes are linked in a real cell. This could
aid genome design, where insights from modelling can rationally
guide in vitro experiments and gene editing (Landon et al., 2019;
Rees-Garbutt et al., 2020, Rees-Garbutt et al., 2021).

We can see from Figure 3 that the knockouts that cause DNA
and septum disruptions cause similar behaviours in the flux
profiles to non-essential gene knockouts, likely because most
of their reaction behaviours were classified as normal.
Supplementary Figure S3 shows that fewer than 10 reactions
were consistently affected across the simulations within these
phenotypic classes, so we can infer that these reactions might be
the bridge between the metabolism process and the DNA
replication or cytokinesis process. Limitations of the M.
genitalium model mean that the results presented here do not
include multiple cell divisions, and it is possible that more
widespread effects on metabolism would be revealed in future
work with more generations.

The interactions between the metabolism and the other
phenotypic classes (protein and RNA) are less simple, as there
are significantly more reactions that are consistently behaving
abnormally. This is not surprising, as there are two main
functions for a cell to perform: growth and replication.
Growth occurs consistently through the cell cycle and requires
constant synthesis and degradation of different proteins and
RNAs. There is also a temporal element, as cascades of
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reactions that form different proteins may need to occur in a
specific order. Any disruption to an aspect of this process during
the life cycle will filter down to other processes, whereas if DNA
replication is disrupted, it is primarily cell division that will be
halted. In future studies, it would be interesting to see if dividing
the proteins into functional groups and pathways for further
analysis leads to a better understanding of their roles and how
they interact with each other.

It is hard to draw solid conclusions about cell behaviours,
as M. genitalium is an organism where not all of the genes
are classified, and the data that the model was built upon are
from many different sources and organisms. In terms of
the network analysis, there are some reactions that have
been observed in M. genitalium but do not have known
enzymes to catalyse them, which leaves gaps within the
model. There may be unexpected and unusual behaviours
that are not captured in the training data as well, leading to
misclassifications; for example, the reactions that performed
badly in the neural network classifications may be sensitive to
small changes in the metabolic network, meaning that their
behaviours are inconsistent and unpredictable. However, it is
useful to flag these reactions and, in the future, to use different
approaches to understand their behaviours. There is also the
possibility that, after applying the machine learning processes,
the results show more about the internal features of the model
itself than the actual biology, which is a good starting point for
lab work.

As whole-cell models become more widely used, analysis
software will become more important. The most recent whole-
cell model is of E. coli (Macklin et al., 2020), which is a better-
understood organism thanM. genitalium, with significantly more
data available to validate and add to it, so this is an important
development for the field. However, the complexity of models will
increase hugely with the size of the genome of the organism, and
as E. coli has an order of magnitude more genes than M.
genitalium (Blattner et al., 1997), analysis tools that can
provide data processing and dimensionality reduction will be
even more important for enhancing understanding and
ultimately genome design.
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