136 research outputs found

    Lack of impact moderating movement adaptation when soccer players perform game specific tasks on a third-generation artificial surface without a cushioning underlay

    Get PDF
    The objective of this study was to investigate how the inclusion of a cushioning underlay in a third-generation artificial turf (3G) affects player biomechanics during soccer-specific tasks. Twelve soccer players (9 males/3 females; 22.6 ± 2.3 y) participated in this study. Mechanical impact testing of each 3G surface; without (3G-NCU) and with cushioning underlay (3G-CU) were conducted. Impact force characteristics, joint kinematics and joint kinetics variables were calculated on each surface condition during a sprint 90° cut (90CUT), a sprint 180° cut (180CUT), a drop jump (DROP) and a sprint with quick deceleration (STOP). For all tasks, greater peak resultant force, peak knee extensor moment and peak ankle dorsi-flexion moment were found in 3G-NCU than 3G-CU (p < 0.05). During 90CUT and STOP, loading rates were higher in 3G-NCU than 3G-CU (p < 0.05). During 180CUT, higher hip, knee and ankle ranges of motion were found in 3G-NCU (p < 0.05). These findings showed that the inclusion of cushioning underlay in 3G reduces impact loading forces and lower limb joint loading in soccer players across game-specific tasks. Overall, players were not attempting to reduce higher lower limb impact loading associated with a lack of surface cushioning underlay

    Demonstration of sub-luminal propagation of single-cycle terahertz pulses for particle acceleration

    Get PDF
    The sub-luminal phase velocity of electromagnetic waves in free space is generally unobtainable, being closely linked to forbidden faster than light group velocities. The requirement of sub-luminal phase-velocity in laser-driven particle acceleration schemes imposes a limit on the total acceleration achievable in free space, and necessitates the use of dispersive structures or waveguides for extending the field-particle interaction. We demonstrate a travelling source approach that overcomes the sub-luminal propagation limits. The approach exploits ultrafast optical sources with slow group velocity propagation, and a group-to-phase front conversion through nonlinear optical interaction. The concept is demonstrated with two terahertz generation processes, nonlinear optical rectification and current-surge rectification. We report measurements of longitudinally polarised single-cycle electric fields with phase and group velocity between 0.77c and 1.75c. The ability to scale to multi-megavolt-per-metre field strengths is demonstrated. Our approach paves the way towards the realisation of cheap and compact particle accelerators with femtosecond scale control of particles

    Electrostatic potential profiles of molecular conductors

    Full text link
    The electrostatic potential across a short ballistic molecular conductor depends sensitively on the geometry of its environment, and can affect its conduction significantly by influencing its energy levels and wave functions. We illustrate some of the issues involved by evaluating the potential profiles for a conducting gold wire and an aromatic phenyl dithiol molecule in various geometries. The potential profile is obtained by solving Poisson's equation with boundary conditions set by the contact electrochemical potentials and coupling the result self-consistently with a nonequilibrium Green's function (NEGF) formulation of transport. The overall shape of the potential profile (ramp vs. flat) depends on the feasibility of transverse screening of electric fields. Accordingly, the screening is better for a thick wire, a multiwalled nanotube or a close-packed self-assembled monolayer (SAM), in comparison to a thin wire, a single-walled nanotube or an isolated molecular conductor. The electrostatic potential further governs the alignment or misalignment of intramolecular levels, which can strongly influence the molecular I-V characteristic. An external gate voltage can modify the overall potential profile, changing the current-voltage (I-V) characteristic from a resonant conducting to a saturating one. The degree of saturation and gate modulation depends on the metal-induced-gap states (MIGS) and on the electrostatic gate control parameter set by the ratio of the gate oxide thickness to the channel length.Comment: to be published in Phys. Rev. B 69, No.3, 0353XX (2004

    Some general properties of the renormalized stress-energy tensor for static quantum states on (n+1)-dimensional spherically symmetric black holes

    Get PDF
    We study the renormalized stress-energy tensor (RSET) for static quantum states on (n+1)-dimensional, static, spherically symmetric black holes. By solving the conservation equations, we are able to write the stress-energy tensor in terms of a single unknown function of the radial co-ordinate, plus two arbitrary constants. Conditions for the stress-energy tensor to be regular at event horizons (including the extremal and ``ultra-extremal'' cases) are then derived using generalized Kruskal-like co-ordinates. These results should be useful for future calculations of the RSET for static quantum states on spherically symmetric black hole geometries in any number of space-time dimensions.Comment: 9 pages, no figures, RevTeX4, references added, accepted for publication in General Relativity and Gravitatio

    Effects of watershed land use on nitrogen concentrations and δ15 Nitrogen in groundwater

    Get PDF
    Author Posting. © The Authors, 2005. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Biogeochemistry 77 (2006): 199-215, doi:10.1007/s10533-005-1036-2.Eutrophication is a major agent of change affecting freshwater, estuarine, and marine systems. It is largely driven by transportation of nitrogen from natural and anthropogenic sources. Research is needed to quantify this nitrogen delivery and to link the delivery to specific land-derived sources. In this study we measured nitrogen concentrations and δ15N values in seepage water entering three freshwater ponds and six estuaries on Cape Cod, Massachusetts and assessed how they varied with different types of land use. Nitrate concentrations and δ15N values in groundwater reflected land use in developed and pristine watersheds. In particular, watersheds with larger populations delivered larger nitrate loads with higher δ15N values to receiving waters. The enriched δ15N values confirmed nitrogen loading model results identifying wastewater contributions from septic tanks as the major N source. Furthermore, it was apparent that N coastal sources had a relatively larger impact on the N loads and isotopic signatures than did inland N sources further upstream in the watersheds. This finding suggests that management priorities could focus on coastal sources as a first course of action. This would require management constraints on a much smaller population.This work was supported by funds from the Woods Hole Oceanographic Institution Sea Grant Program, from the Cooperative Institute for Coastal and Estuarine Environmental Technology, from Massachusetts Department of Environmental Protection to Applied Science Associates, Narragansett, RI, as well as from Palmer/McLeod and NOAA National Estuarine Research Reserve Fellowships to Kevin Kroeger. This work is the result of research sponsored by NOAA National Sea Grant College Program Office, Department of Commerce, under Grant No. NA86RG0075, Woods Hole Oceanographic Institution Sea Grant Project No. R/M-40

    Microfluidic Isolation of Neuronal-Enriched Extracellular Vesicles Shows Distinct and Common Neurological Proteins in Long COVID, HIV Infection and Alzheimer’s Disease

    Get PDF
    Long COVID (LongC) is associated with a myriad of symptoms including cognitive impairment. We reported at the beginning of the COVID-19 pandemic that neuronal-enriched or L1CAM+ extracellular vesicles (nEVs) from people with LongC contained proteins associated with Alzheimer’s disease (AD). Since that time, a subset of people with prior COVID infection continue to report neurological problems more than three months after infection. Blood markers to better characterize LongC are elusive. To further identify neuronal proteins associated with LongC, we maximized the number of nEVs isolated from plasma by developing a hybrid EV Microfluidic Affinity Purification (EV-MAP) technique. We isolated nEVs from people with LongC and neurological complaints, AD, and HIV infection with mild cognitive impairment. Using the OLINK platform that assesses 384 neurological proteins, we identified 11 significant proteins increased in LongC and 2 decreased (BST1, GGT1). Fourteen proteins were increased in AD and forty proteins associated with HIV cognitive impairment were elevated with one decreased (IVD). One common protein (BST1) was decreased in LongC and increased in HIV. Six proteins (MIF, ENO1, MESD, NUDT5, TNFSF14 and FYB1) were expressed in both LongC and AD and no proteins were common to HIV and AD. This study begins to identify differences and similarities in the neuronal response to LongC versus AD and HIV infection

    The VANDELS ESO public spectroscopic survey

    Get PDF
    VANDELS is a uniquely deep spectroscopic survey of high-redshift galaxies with the VIMOS spectrograph on ESO’s Very Large Telescope (VLT). The survey has obtained ultradeep optical (0.48 < λ < 1.0 μ m) spectroscopy of ≃2100 galaxies within the redshift interval 1.0 ≤ z ≤ 7.0, over a total area of ≃0.2 deg2 centred on the CANDELS Ultra Deep Survey and Chandra Deep Field South fields. Based on accurate photometric redshift pre-selection, 85 per cent of the galaxies targeted by VANDELS were selected to be at z ≥ 3. Exploiting the red sensitivity of the refurbished VIMOS spectrograph, the fundamental aim of the survey is to provide the high-signal-to-noise ratio spectra necessary to measure key physical properties such as stellar population ages, masses, metallicities, and outflow velocities from detailed absorption-line studies. Using integration times calculated to produce an approximately constant signal-to-noise ratio (20 < tint< 80 h), the VANDELS survey targeted: (a) bright star-forming galaxies at 2.4 ≤ z ≤ 5.5, (b) massive quiescent galaxies at 1.0 ≤ z ≤ 2.5, (c) fainter star-forming galaxies at 3.0 ≤ z ≤ 7.0, and (d) X-ray/Spitzer-selected active galactic nuclei and Herschel-detected galaxies. By targeting two extragalactic survey fields with superb multiwavelength imaging data, VANDELS will produce a unique legacy data set for exploring the physics underpinning high-redshift galaxy evolution. In this paper, we provide an overview of the VANDELS survey designed to support the science exploitation of the first ESO public data release, focusing on the scientific motivation, survey design, and target selection

    Reforming Watershed Restoration: Science in Need of Application and Applications in Need of Science

    Full text link

    Historical atmospheric pollution trends in Southeast Asia inferred from lake sediment records

    Get PDF
    Fossil fuel combustion leads to increased levels of air pollution, which negatively affects human health as well as the environment. Documented data for Southeast Asia (SEA) show a strong increase in fossil fuel consumption since 1980, but information on coal and oil combustion before 1980 is not widely available. Spheroidal carbonaceous particles (SCPs) and heavy metals, such as mercury (Hg), are emitted as by-products of fossil fuel combustion and may accumulate in sediments following atmospheric fallout. Here we use sediment SCP and Hg records from several freshwater lentic ecosystems in SEA (Malaysia, Philippines, Singapore) to reconstruct long-term, region-wide variations in levels of these two key atmospheric pollution indicators. The age-depth models of Philippine sediment cores do not reach back far enough to date first SCP presence, but single SCP occurrences are first observed between 1925 and 1950 for a Malaysian site. Increasing SCP flux is observed at our sites from 1960 onward, although individual sites show minor differences in trends. SCP fluxes show a general decline after 2000 at each of our study sites. While the records show broadly similar temporal trends across SEA, absolute SCP fluxes differ between sites, with a record from Malaysia showing SCP fluxes that are two orders of magnitude lower than records from the Philippines. Similar trends in records from China and Japan represent the emergence of atmospheric pollution as a broadly-based inter-region environmental problem during the 20th century. Hg fluxes were relatively stable from the second half of the 20th century onward. As catchment soils are also contaminated with atmospheric Hg, future soil erosion can be expected to lead to enhanced Hg flux into surface waters
    • …
    corecore