77 research outputs found

    A Local Proinflammatory Signalling Loop Facilitates Adverse Age-Associated Arterial Remodeling

    Get PDF
    Background: The coincidence of vascular smooth muscle cells (VSMC) infiltration and collagen deposition within a diffusely thickened intima is a salient feature of central arterial wall inflammation that accompanies advancing age. However, the molecular mechanisms involved remain undefined. Methodology/Principal Findings: Immunostaining and immunoblotting of rat aortae demonstrate that a triad of proinflammatory molecules, MCP-1, TGF-b1, and MMP-2 increases within the aortic wall with aging. Exposure of VSMC isolated from 8-mo-old rats (young) to MCP-1 effects, via CCR-2 signaling, both an increase in TGF-b1 activity, up to levels of untreated VSMC from 30-mo-old (old) rats, and a concurrent increase in MMP-2 activation. Furthermore, exposure of young VSMC to TGF-b1 increases levels of MCP-1, and MMP-2 activation, to levels of untreated VSMC from old rats. This autocatalytic signaling loop that enhances collagen production and invasiveness of VSMC is effectively suppressed by si-MCP-1, a CCR2 antagonist, or MMP-2 inhibition. Conclusions/Significance: Threshold levels of MCP-1, MMP-2, or TGF-b1 activity trigger a feed-forward signaling mechanism that is implicated in the initiation and progression of adverse age-associated arterial wall remodeling. Intervention that suppressed this signaling loop may potentially retard age-associated adverse arterial remodeling

    Dilated Cardiomyopathy with Increased SR Ca2+ Loading Preceded by a Hypercontractile State and Diastolic Failure in the α1CTG Mouse

    Get PDF
    Mice over-expressing the α1−subunit (pore) of the L-type Ca2+ channel (α1CTG) by 4months (mo) of age exhibit an enlarged heart, hypertrophied myocytes, increased Ca2+ current and Ca2+ transient amplitude, but a normal SR Ca2+ load. With advancing age (8–11 mo), some mice demonstrate advanced hypertrophy but are not in congestive heart failure (NFTG), while others evolve to frank dilated congestive heart failure (FTG). We demonstrate that older NFTG myocytes exhibit a hypercontractile state over a wide range of stimulation frequencies, but maintain a normal SR Ca2+ load compared to age matched non-transgenic (NTG) myocytes. However, at high stimulation rates (2–4 Hz) signs of diastolic contractile failure appear in NFTG cells. The evolution of frank congestive failure in FTG is accompanied by a further increase in heart mass and myocyte size, and phospholamban and ryanodine receptor protein levels and phosphorylation become reduced. In FTG, the SR Ca2+ load increases and Ca2+ release following excitation, increases further. An enhanced NCX function in FTG, as reflected by an accelerated relaxation of the caffeine-induced Ca2+ transient, is insufficient to maintain a normal diastolic Ca2+ during high rates of stimulation. Although a high SR Ca2+ release following excitation is maintained, the hypercontractile state is not maintained at high rates of stimulation, and signs of both systolic and diastolic contractile failure appear. Thus, the dilated cardiomyopathy that evolves in this mouse model exhibits signs of both systolic and diastolic failure, but not a deficient SR Ca2+ loading or release, as occurs in some other cardiomyopathic models

    A Low Dose of Dietary Resveratrol Partially Mimics Caloric Restriction and Retards Aging Parameters in Mice

    Get PDF
    Resveratrol in high doses has been shown to extend lifespan in some studies in invertebrates and to prevent early mortality in mice fed a high-fat diet. We fed mice from middle age (14-months) to old age (30-months) either a control diet, a low dose of resveratrol (4.9 mg kg−1 day−1), or a calorie restricted (CR) diet and examined genome-wide transcriptional profiles. We report a striking transcriptional overlap of CR and resveratrol in heart, skeletal muscle and brain. Both dietary interventions inhibit gene expression profiles associated with cardiac and skeletal muscle aging, and prevent age-related cardiac dysfunction. Dietary resveratrol also mimics the effects of CR in insulin mediated glucose uptake in muscle. Gene expression profiling suggests that both CR and resveratrol may retard some aspects of aging through alterations in chromatin structure and transcription. Resveratrol, at doses that can be readily achieved in humans, fulfills the definition of a dietary compound that mimics some aspects of CR

    Meta-analysis of genome-wide association studies from the CHARGE consortium identifies common variants associated with carotid intima media thickness and plaque

    Get PDF
    Carotid intima media thickness (cIMT) and plaque determined by ultrasonography are established measures of subclinical atherosclerosis that each predicts future cardiovascular disease events. We conducted a meta-analysis of genome-wide association data in 31,211 participants of European ancestry from nine large studies in the setting of the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium. We then sought additional evidence to support our findings among 11,273 individuals using data from seven additional studies. In the combined meta-analysis, we identified three genomic regions associated with common carotid intima media thickness and two different regions associated with the presence of carotid plaque (P < 5 × 10 -8). The associated SNPs mapped in or near genes related to cellular signaling, lipid metabolism and blood pressure homeostasis, and two of the regions were associated with coronary artery disease (P < 0.006) in the Coronary Artery Disease Genome-Wide Replication and Meta-Analysis (CARDIoGRAM) consortium. Our findings may provide new insight into pathways leading to subclinical atherosclerosis and subsequent cardiovascular events

    Genome-wide analysis of BMI in adolescents and young adults reveals additional insight into the effects of genetic loci over the life course

    Get PDF
    Genetic loci for body mass index (BMI) in adolescence and young adulthood, a period of high risk for weight gain, are understudied, yet may yield important insight into the etiology of obesity and early intervention. To identify novel genetic loci and examine the influence of known loci on BMI during this critical time period in late adolescence and early adulthood, we performed a two-stage meta-analysis using 14 genome-wide association studies in populations of European ancestry with data on BMI between ages 16 and 25 in up to 29 880 individuals. We identified seven independent loci (P < 5.0 × 10−8) near FTO (P = 3.72 × 10−23), TMEM18 (P = 3.24 × 10−17), MC4R (P = 4.41 × 10−17), TNNI3K (P = 4.32 × 10−11), SEC16B (P = 6.24 × 10−9), GNPDA2 (P = 1.11 × 10−8) and POMC (P = 4.94 × 10−8) as well as a potential secondary signal at the POMC locus (rs2118404, P = 2.4 × 10−5 after conditioning on the established single-nucleotide polymorphism at this locus) in adolescents and young adults. To evaluate the impact of the established genetic loci on BMI at these young ages, we examined differences between the effect sizes of 32 published BMI loci in European adult populations (aged 18-90) and those observed in our adolescent and young adult meta-analysis. Four loci (near PRKD1, TNNI3K, SEC16B and CADM2) had larger effects and one locus (near SH2B1) had a smaller effect on BMI during adolescence and young adulthood compared with older adults (P < 0.05). These results suggest that genetic loci for BMI can vary in their effects across the life course, underlying the importance of evaluating BMI at different age

    Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization.

    Get PDF
    The QT interval, an electrocardiographic measure reflecting myocardial repolarization, is a heritable trait. QT prolongation is a risk factor for ventricular arrhythmias and sudden cardiac death (SCD) and could indicate the presence of the potentially lethal mendelian long-QT syndrome (LQTS). Using a genome-wide association and replication study in up to 100,000 individuals, we identified 35 common variant loci associated with QT interval that collectively explain ∼8-10% of QT-interval variation and highlight the importance of calcium regulation in myocardial repolarization. Rare variant analysis of 6 new QT interval-associated loci in 298 unrelated probands with LQTS identified coding variants not found in controls but of uncertain causality and therefore requiring validation. Several newly identified loci encode proteins that physically interact with other recognized repolarization proteins. Our integration of common variant association, expression and orthogonal protein-protein interaction screens provides new insights into cardiac electrophysiology and identifies new candidate genes for ventricular arrhythmias, LQTS and SCD

    A Genome-Wide Association Scan on the Levels of Markers of Inflammation in Sardinians Reveals Associations That Underpin Its Complex Regulation

    Get PDF
    Identifying the genes that influence levels of pro-inflammatory molecules can help to elucidate the mechanisms underlying this process. We first conducted a two-stage genome-wide association scan (GWAS) for the key inflammatory biomarkers Interleukin-6 (IL-6), the general measure of inflammation erythrocyte sedimentation rate (ESR), monocyte chemotactic protein-1 (MCP-1), and high-sensitivity C-reactive protein (hsCRP) in a large cohort of individuals from the founder population of Sardinia. By analysing 731,213 autosomal or X chromosome SNPs and an additional ∼1.9 million imputed variants in 4,694 individuals, we identified several SNPs associated with the selected quantitative trait loci (QTLs) and replicated all the top signals in an independent sample of 1,392 individuals from the same population. Next, to increase power to detect and resolve associations, we further genotyped the whole cohort (6,145 individuals) for 293,875 variants included on the ImmunoChip and MetaboChip custom arrays. Overall, our combined approach led to the identification of 9 genome-wide significant novel independent signals—5 of which were identified only with the custom arrays—and provided confirmatory evidence for an additional 7. Novel signals include: for IL-6, in the ABO gene (rs657152, p = 2.13×10−29); for ESR, at the HBB (rs4910472, p = 2.31×10−11) and UCN119B/SPPL3 (rs11829037, p = 8.91×10−10) loci; for MCP-1, near its receptor CCR2 (rs17141006, p = 7.53×10−13) and in CADM3 (rs3026968, p = 7.63×10−13); for hsCRP, within the CRP gene (rs3093077, p = 5.73×10−21), near DARC (rs3845624, p = 1.43×10−10), UNC119B/SPPL3 (rs11829037, p = 1.50×10−14), and ICOSLG/AIRE (rs113459440, p = 1.54×10−08) loci. Confirmatory evidence was found for IL-6 in the IL-6R gene (rs4129267); for ESR at CR1 (rs12567990) and TMEM57 (rs10903129); for MCP-1 at DARC (rs12075); and for hsCRP at CRP (rs1205), HNF1A (rs225918), and APOC-I (rs4420638). Our results improve the current knowledge of genetic variants underlying inflammation and provide novel clues for the understanding of the molecular mechanisms regulating this complex process

    Genome-wide analysis of BMI in adolescents and young adults reveals additional insight into the effects of genetic loci over the life course

    Get PDF
    Genetic loci for body mass index (BMI) in adolescence and young adulthood, a period of high risk for weight gain, are understudied, yet may yield important insight into the etiology of obesity and early intervention. To identify novel genetic loci and examine the influence of known loci on BMI during this critical time period in late adolescence and early adulthood, we performed a two-stage meta-analysis using 14 genome-wide association studies in populations of European ancestry with data on BMI between ages 16 and 25 in up to 29 880 individuals. We identified seven independent loci (P < 5.0 × 10−8) near FTO (P = 3.72 × 10−23), TMEM18 (P = 3.24 × 10−17), MC4R (P = 4.41 × 10−17), TNNI3K (P = 4.32 × 10−11), SEC16B (P = 6.24 × 10−9), GNPDA2 (P = 1.11 × 10−8) and POMC (P = 4.94 × 10−8) as well as a potential secondary signal at the POMC locus (rs2118404, P = 2.4 × 10−5 after conditioning on the established single-nucleotide polymorphism at this locus) in adolescents and young adults. To evaluate the impact of the established genetic loci on BMI at these young ages, we examined differences between the effect sizes of 32 published BMI loci in European adult populations (aged 18–90) and those observed in our adolescent and young adult meta-analysis. Four loci (near PRKD1, TNNI3K, SEC16B and CADM2) had larger effects and one locus (near SH2B1) had a smaller effect on BMI during adolescence and young adulthood compared with older adults (P < 0.05). These results suggest that genetic loci for BMI can vary in their effects across the life course, underlying the importance of evaluating BMI at different ages

    Multi-ancestry GWAS of the electrocardiographic PR interval identifies 202 loci underlying cardiac conduction

    Get PDF
    The electrocardiographic PR interval reflects atrioventricular conduction, and is associated with conduction abnormalities, pacemaker implantation, atrial fibrillation (AF), and cardiovascular mortality. Here we report a multi-ancestry (N=293,051) genome-wide association meta-analysis for the PR interval, discovering 202 loci of which 141 have not previously been reported. Variants at identified loci increase the percentage of heritability explained, from 33.5% to 62.6%. We observe enrichment for cardiac muscle developmental/contractile and cytoskeletal genes, highlighting key regulation processes for atrioventricular conduction. Additionally, 8 loci not previously reported harbor genes underlying inherited arrhythmic syndromes and/or cardiomyopathies suggesting a role for these genes in cardiovascular pathology in the general population. We show that polygenic predisposition to PR interval duration is an endophenotype for cardiovascular disease, including distal conduction disease, AF, and atrioventricular pre-excitation. These findings advance our understanding of the polygenic basis of cardiac conduction, and the genetic relationship between PR interval duration and cardiovascular disease. On the electrocardiogram, the PR interval reflects conduction from the atria to ventricles and also serves as risk indicator of cardiovascular morbidity and mortality. Here, the authors perform genome-wide meta-analyses for PR interval in multiple ancestries and identify 141 previously unreported genetic loci.Peer reviewe
    corecore