226 research outputs found

    The applicability of Brillouin scattering to flow field diagnostics

    Get PDF
    To fill the void between turbulence theory and experiment; particularly in the flow fields consisting of monatomic gases, for example in wind tunnels, means of measuring fluctuating quantities are needed. In the area of density fluctuation measurement, the optical method of Brillouin scattering was suggested. This was based on the theory, that the Brillouin scattered intensity is proportional to a function of density. In this investigation the potential of this method as a diagnostic tool was studied. Here the density fluctuations in gases were sought. Continuous wave lasers and interferometers were used as the primary illuminating source and scattered light filters respectively

    Student Motivation in the Urban Middle School Science Classroom

    Get PDF
    Student motivation in any setting is difficult, but proves to be a unique challenge when dealing with urban middle school students. During my student teaching experience and my first year teaching in such a setting, I have found that it is extremely difficult to instill the importance of education in these students. This thesis focuses on the effects of teachers, peers, and administration on student motivation and incorporates strategies to improve motivation through a variety of techniques. At the completion of the research section of this thesis, I discovered that it was primarily the teacher that was responsible for the motivation of these students, as suggested during the literature review, with some motivation relying on peers and very little relying on administration. My study also suggests that a shift from a teacher-centered to a student-centered classroom, incorporation of cooperative work group strategies, and clear directions and expectations set forth by the teacher are key in instilling motivation in these students

    Global gene expression analysis of human erythroid progenitors

    Get PDF
    This article is available open access through the publisher’s website. Copyright @ 2011 American Society of Hematology. This article has an erratum: http://bloodjournal.hematologylibrary.org/content/118/26/6993.3.Understanding the pattern of gene expression during erythropoiesis is crucial for a synthesis of erythroid developmental biology. Here, we isolated 4 distinct populations at successive erythropoietin-dependent stages of erythropoiesis, including the terminal, pyknotic stage. The transcriptome was determined using Affymetrix arrays. First, we demonstrated the importance of using defined cell populations to identify lineage and temporally specific patterns of gene expression. Cells sorted by surface expression profile not only express significantly fewer genes than unsorted cells but also demonstrate significantly greater differences in the expression levels of particular genes between stages than unsorted cells. Second, using standard software, we identified more than 1000 transcripts not previously observed to be differentially expressed during erythroid maturation, 13 of which are highly significantly terminally regulated, including RFXAP and SMARCA4. Third, using matched filtering, we identified 12 transcripts not previously reported to be continuously up-regulated in maturing human primary erythroblasts. Finally, using transcription factor binding site analysis, we identified potential transcription factors that may regulate gene expression during terminal erythropoiesis. Our stringent lists of differentially regulated and continuously expressed transcripts containing many genes with undiscovered functions in erythroblasts are a resource for future functional studies of erythropoiesis. Our Human Erythroid Maturation database is available at https://cellline.molbiol.ox.ac.uk/eryth/index.html.National Health Service Blood and Transplant, National Institute for Health Research Biomedical Research Center Program, and National Institute for Health Research

    Sulfatase modifying factor 1–mediated fibroblast growth factor signaling primes hematopoietic multilineage development

    Get PDF
    Self-renewal and differentiation of hematopoietic stem cells (HSCs) are balanced by the concerted activities of the fibroblast growth factor (FGF), Wnt, and Notch pathways, which are tuned by enzyme-mediated remodeling of heparan sulfate proteoglycans (HSPGs). Sulfatase modifying factor 1 (SUMF1) activates the Sulf1 and Sulf2 sulfatases that remodel the HSPGs, and is mutated in patients with multiple sulfatase deficiency. Here, we show that the FGF signaling pathway is constitutively activated in Sumf1−/− HSCs and hematopoietic stem progenitor cells (HSPCs). These cells show increased p-extracellular signal-regulated kinase levels, which in turn promote β-catenin accumulation. Constitutive activation of FGF signaling results in a block in erythroid differentiation at the chromatophilic erythroblast stage, and of B lymphocyte differentiation at the pro–B cell stage. A reduction in mature myeloid cells and an aberrant development of T lymphocytes are also seen. These defects are rescued in vivo by blocking the FGF pathway in Sumf1−/− mice. Transplantation of Sumf1−/− HSPCs into wild-type mice reconstituted the phenotype of the donors, suggesting a cell autonomous defect. These data indicate that Sumf1 controls HSPC differentiation and hematopoietic lineage development through FGF and Wnt signaling

    Mast cell lineage diversion of T lineage precursors by the essential T cell transcription factor GATA-3

    Get PDF
    GATA-3 is essential for T cell development from the earliest stages. However, abundant GATA-3 can drive T lineage precursors to a non–T cell fate, depending on Notch signaling and developmental stage. Here, overexpression of GATA-3 blocked the survival of pro–T cells when Notch-Delta signals were present but enhanced viability in their absence. In fetal thymocytes at the double-negative 1 (DN1) stage and DN2 stage but not those at the DN3 stage, overexpression of GATA-3 rapidly induced respecification to the mast cell lineage with high frequency by direct transcriptional 'reprogramming'. Normal DN2 thymocytes also showed mast cell potential when interleukin 3 and stem cell factor were added in the absence of Notch signaling. Our results suggest a close relationship between the pro–T cell and mast cell programs and a previously unknown function for Notch in T lineage fidelity

    Whole-genome fingerprint of the DNA methylome during chemically induced differentiation of the human AML cell line HL-60/S4

    Get PDF
    Epigenomic regulation plays a vital role in cell differentiation. The leukemic HL-60/S4 [human myeloid leukemic cell line HL-60/S4 (ATCC CRL-3306)] promyelocytic cell can be easily differentiated from its undifferentiated promyelocyte state into neutrophil- and macrophage-like cell states. In this study, we present the underlying genome and epigenome architecture of HL-60/S4 through its differentiation. We performed whole-genome bisulphite sequencing of HL-60/S4 cells and their differentiated counterparts. With the support of karyotyping, we show that HL-60/S4 maintains a stable genome throughout differentiation. Analysis of differential Cytosine-phosphate-Guanine dinucleotide methylation reveals that most methylation changes occur in the macrophage-like state. Differential methylation of promoters was associated with immune-related terms. Key immune genes, CEBPA, GFI1, MAFB and GATA1 showed differential expression and methylation. However, we observed the strongest enrichment of methylation changes in enhancers and CTCF binding sites, implying that methylation plays a major role in large-scale transcriptional reprogramming and chromatin reorganisation during differentiation. Correlation of differential expression and distal methylation with support from chromatin capture experiments allowed us to identify putative proximal and long-range enhancers for a number of immune cell differentiation genes, including CEBPA and CCNF. Integrating expression data, we present a model of HL-60/S4 differentiation in relation to the wider scope of myeloid differentiation

    HES1 in immunity and cancer

    Get PDF
    Hairy and enhancer of split homolog-1 (HES1) is a part of an extensive family of basic helix-loop-helix (bHLH) proteins and plays a crucial role in the control and regulation of cell cycle, proliferation, cell differentiation, survival and apoptosis in neuronal, endocrine, T-lymphocyte progenitors as well as various cancers. HES1 is a transcription factor which is regulated by the NOTCH, Hedgehog and Wnt signalling pathways. Aberrant expression of these pathways is a common feature of cancerous cells. There appears to be a fine and complicated crosstalk at the molecular level between the various signalling pathways and HES1, which contributes to its effects on the immune response and cancers such as leukaemia. Several mechanisms have been proposed, including an enhanced invasiveness and metastasis by inducing epithelial mesenchymal transition (EMT), in addition to its strict requirement for tumour cell survival. In this review, we summarize the current biology and molecular mechanisms as well as its use as a clinical target in cancer therapeutics

    Stochastic Cytokine Expression Induces Mixed T Helper Cell States

    Get PDF
    During eukaryotic development, the induction of a lineage-specific transcription factor typically drives differentiation of multipotent progenitor cells, while repressing that of alternative lineages. This process is often mediated by some extracellular signaling molecules, such as cytokines that can bind to cell surface receptors, leading to activation and/or repression of transcription factors. We explored the early differentiation of naive CD4 T helper (Th) cells into Th1 versus Th2 states by counting single transcripts and quantifying immunofluorescence in individual cells. Contrary to mutually exclusive expression of antagonistic transcription factors, we observed their ubiquitous co-expression in individual cells at high levels that are distinct from basal-level co-expression during lineage priming. We observed that cytokines are expressed only in a small subpopulation of cells, independent from the expression of transcription factors in these single cells. This cell-to-cell variation in the cytokine expression during the early phase of T helper cell differentiation is significantly larger than in the fully differentiated state. Upon inhibition of cytokine signaling, we observed the classic mutual exclusion of antagonistic transcription factors, thus revealing a weak intracellular network otherwise overruled by the strong signals that emanate from extracellular cytokines. These results suggest that during the early differentiation process CD4 T cells acquire a mixed Th1/Th2 state, instructed by extracellular cytokines. The interplay between extracellular and intracellular signaling components unveiled in Th1/Th2 differentiation may be a common strategy for mammalian cells to buffer against noisy cytokine expression.National Cancer Institute (U.S.). Physical Sciences-Oncology Center (U54CA143874)National Institutes of Health (U.S.) (Pioneer Award)National Institutes of Health (U.S.) (Grant R01-GM068957

    The Justy mutation identifies Gon4-like as a gene that is essential for B lymphopoiesis

    Get PDF
    A recessive mutation named Justy was found that abolishes B lymphopoiesis but does not impair other major aspects of hematopoiesis. Transplantation experiments showed that homozygosity for Justy prevented hematopoietic progenitors from generating B cells but did not affect the ability of bone marrow stroma to support B lymphopoiesis. In bone marrow from mutant mice, common lymphoid progenitors and pre-pro–B cells appeared normal, but cells at subsequent stages of B lymphopoiesis were dramatically reduced in number. Under culture conditions that promoted B lymphopoiesis, mutant pre-pro–B cells remained alive and began expressing the B cell marker CD19 but failed to proliferate. In contrast, these cells were able to generate myeloid or T/NK precursors. Genetic and molecular analysis demonstrated that Justy is a point mutation within the Gon4-like (Gon4l) gene, which encodes a protein with homology to transcriptional regulators. This mutation was found to disrupt Gon4l pre-mRNA splicing and dramatically reduce expression of wild-type Gon4l RNA and protein. Consistent with a role for Gon4l in transcriptional regulation, the levels of RNA encoding C/EBPα and PU.1 were abnormally high in mutant B cell progenitors. Our findings indicate that the Gon4l protein is required for B lymphopoiesis and may function to regulate gene expression during this process
    corecore