36 research outputs found

    A low background facility inside the LVD detector at Gran Sasso

    Full text link
    The Large Volume Detector (LVD) in the Gran Sasso Laboratory of INFN is an observatory mainly devoted to search for neutrinos from core collapse supernovae. It consists of 1000 tons of liquid scintillator divided in 840 stainless steel tanks 1.5m3^3 each. In this letter we present the possibility for LVD to work both as a passive shield and moderator for the low energy gamma and neutron background and as an active veto for muons and higher energy neutrons. An inner region inside the LVD structure ("LVD Core Facility") can be identified, with a volume of about 30m3^3, with the neutron background typical of an underground laboratory placed at a much deeper site. This region can be realized with a negligible impact on the LVD operation and sensitive mass. The LVD Core Facility could be effectively exploited by a compact experiment for the search of rare events, such as double beta decay or dark matter.Comment: 5 pages, 2 figure

    The Gran Sasso muon puzzle

    Full text link
    We carry out a time-series analysis of the combined data from three experiments measuring the cosmic muon flux at the Gran Sasso laboratory, at a depth of 3800 m.w.e. These data, taken by the MACRO, LVD and Borexino experiments, span a period of over 20 years, and correspond to muons with a threshold energy, at sea level, of around 1.3 TeV. We compare the best-fit period and phase of the full muon data set with the combined DAMA/NaI and DAMA/LIBRA data, which spans the same time period, as a test of the hypothesis that the cosmic ray muon flux is responsible for the annual modulation detected by DAMA. We find in the muon data a large-amplitude fluctuation with a period of around one year, and a phase that is incompatible with that of the DAMA modulation at 5.2 sigmas. Aside from this annual variation, the muon data also contains a further significant modulation with a period between 10 and 11 years and a power well above the 99.9% C.L threshold for noise, whose phase corresponds well with the solar cycle: a surprising observation for such high energy muons. We see no corresponding long-period oscillation in the stratospheric temperature data.Comment: Minor changes and clarifications, matches version accepted at JCAP. 5 pages, 3 figure

    Muon and Cosmogenic Neutron Detection in Borexino

    Full text link
    Borexino, a liquid scintillator detector at LNGS, is designed for the detection of neutrinos and antineutrinos from the Sun, supernovae, nuclear reactors, and the Earth. The feeble nature of these signals requires a strong suppression of backgrounds below a few MeV. Very low intrinsic radiogenic contamination of all detector components needs to be accompanied by the efficient identification of muons and of muon-induced backgrounds. Muons produce unstable nuclei by spallation processes along their trajectory through the detector whose decays can mimic the expected signals; for isotopes with half-lives longer than a few seconds, the dead time induced by a muon-related veto becomes unacceptably long, unless its application can be restricted to a sub-volume along the muon track. Consequently, not only the identification of muons with very high efficiency but also a precise reconstruction of their tracks is of primary importance for the physics program of the experiment. The Borexino inner detector is surrounded by an outer water-Cherenkov detector that plays a fundamental role in accomplishing this task. The detector design principles and their implementation are described. The strategies adopted to identify muons are reviewed and their efficiency is evaluated. The overall muon veto efficiency is found to be 99.992% or better. Ad-hoc track reconstruction algorithms developed are presented. Their performance is tested against muon events of known direction such as those from the CNGS neutrino beam, test tracks available from a dedicated External Muon Tracker and cosmic muons whose angular distribution reflects the local overburden profile. The achieved angular resolution is 3-5 deg and the lateral resolution is 35-50 cm, depending on the impact parameter of the crossing muon. The methods implemented to efficiently tag cosmogenic neutrons are also presented.Comment: 42 pages. 32 figures on 37 files. Uses JINST.cls. 1 auxiliary file (defines.tex) with TEX macros. submitted to Journal of Instrumentatio

    Muon and Cosmogenic Neutron Detection in Borexino

    Full text link
    Borexino, a liquid scintillator detector at LNGS, is designed for the detection of neutrinos and antineutrinos from the Sun, supernovae, nuclear reactors, and the Earth. The feeble nature of these signals requires a strong suppression of backgrounds below a few MeV. Very low intrinsic radiogenic contamination of all detector components needs to be accompanied by the efficient identification of muons and of muon-induced backgrounds. Muons produce unstable nuclei by spallation processes along their trajectory through the detector whose decays can mimic the expected signals; for isotopes with half-lives longer than a few seconds, the dead time induced by a muon-related veto becomes unacceptably long, unless its application can be restricted to a sub-volume along the muon track. Consequently, not only the identification of muons with very high efficiency but also a precise reconstruction of their tracks is of primary importance for the physics program of the experiment. The Borexino inner detector is surrounded by an outer water-Cherenkov detector that plays a fundamental role in accomplishing this task. The detector design principles and their implementation are described. The strategies adopted to identify muons are reviewed and their efficiency is evaluated. The overall muon veto efficiency is found to be 99.992% or better. Ad-hoc track reconstruction algorithms developed are presented. Their performance is tested against muon events of known direction such as those from the CNGS neutrino beam, test tracks available from a dedicated External Muon Tracker and cosmic muons whose angular distribution reflects the local overburden profile. The achieved angular resolution is 3-5 deg and the lateral resolution is 35-50 cm, depending on the impact parameter of the crossing muon. The methods implemented to efficiently tag cosmogenic neutrons are also presented.Comment: 42 pages. 32 figures on 37 files. Uses JINST.cls. 1 auxiliary file (defines.tex) with TEX macros. submitted to Journal of Instrumentatio

    Muon and Cosmogenic Neutron Detection in Borexino

    Full text link
    Borexino, a liquid scintillator detector at LNGS, is designed for the detection of neutrinos and antineutrinos from the Sun, supernovae, nuclear reactors, and the Earth. The feeble nature of these signals requires a strong suppression of backgrounds below a few MeV. Very low intrinsic radiogenic contamination of all detector components needs to be accompanied by the efficient identification of muons and of muon-induced backgrounds. Muons produce unstable nuclei by spallation processes along their trajectory through the detector whose decays can mimic the expected signals; for isotopes with half-lives longer than a few seconds, the dead time induced by a muon-related veto becomes unacceptably long, unless its application can be restricted to a sub-volume along the muon track. Consequently, not only the identification of muons with very high efficiency but also a precise reconstruction of their tracks is of primary importance for the physics program of the experiment. The Borexino inner detector is surrounded by an outer water-Cherenkov detector that plays a fundamental role in accomplishing this task. The detector design principles and their implementation are described. The strategies adopted to identify muons are reviewed and their efficiency is evaluated. The overall muon veto efficiency is found to be 99.992% or better. Ad-hoc track reconstruction algorithms developed are presented. Their performance is tested against muon events of known direction such as those from the CNGS neutrino beam, test tracks available from a dedicated External Muon Tracker and cosmic muons whose angular distribution reflects the local overburden profile. The achieved angular resolution is 3-5 deg and the lateral resolution is 35-50 cm, depending on the impact parameter of the crossing muon. The methods implemented to efficiently tag cosmogenic neutrons are also presented.Comment: 42 pages. 32 figures on 37 files. Uses JINST.cls. 1 auxiliary file (defines.tex) with TEX macros. submitted to Journal of Instrumentatio

    Binary Black Hole Mergers in the first Advanced LIGO Observing Run

    Get PDF
    The first observational run of the Advanced LIGO detectors, from September 12, 2015 to January 19, 2016, saw the first detections of gravitational waves from binary black hole mergers. In this paper we present full results from a search for binary black hole merger signals with total masses up to 100M100 M_\odot and detailed implications from our observations of these systems. Our search, based on general-relativistic models of gravitational wave signals from binary black hole systems, unambiguously identified two signals, GW150914 and GW151226, with a significance of greater than 5σ5\sigma over the observing period. It also identified a third possible signal, LVT151012, with substantially lower significance, which has a 87% probability of being of astrophysical origin. We provide detailed estimates of the parameters of the observed systems. Both GW150914 and GW151226 provide an unprecedented opportunity to study the two-body motion of a compact-object binary in the large velocity, highly nonlinear regime. We do not observe any deviations from general relativity, and place improved empirical bounds on several high-order post-Newtonian coefficients. From our observations we infer stellar-mass binary black hole merger rates lying in the range 9240Gpc3yr19-240 \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}. These observations are beginning to inform astrophysical predictions of binary black hole formation rates, and indicate that future observing runs of the Advanced detector network will yield many more gravitational wave detections

    Localization and broadband follow-up of the gravitational-wave transient GW150914

    Get PDF
    A gravitational-wave transient was identified in data recorded by the Advanced LIGO detectors on 2015 September 14. The event candidate, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the gravitational wave data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network Circulars, giving an overview of the participating facilities, the gravitational wave sky localization coverage, the timeline and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the electromagnetic data and results of the electromagnetic follow-up campaign will be disseminated in the papers of the individual teams
    corecore