289 research outputs found
Spectrum of Oncogenic Driver Mutations in Lung Adenocarcinomas from East Asian Never Smokers
PURPOSE:We previously showed that 90% (47 of 52; 95% CI, 0.79 to 0.96) of lung adenocarcinomas from East Asian never-smokers harbored well-known oncogenic mutations in just four genes: EGFR, HER2, ALK, and KRAS. Here, we sought to extend these findings to more samples and identify driver alterations in tumors negative for these mutations. EXPERIMENTAL DESIGN:We have collected and analyzed 202 resected lung adenocarcinomas from never smokers seen at Fudan University Shanghai Cancer Center. Since mutations were mutually exclusive in the first 52 examined, we determined the status of EGFR, KRAS, HER2, ALK, and BRAF in stepwise fashion as previously described. Samples negative for mutations in these 5 genes were subsequently examined for known ROS1 fusions by RT-PCR and direct sequencing. RESULTS:152 tumors (75.3%) harbored EGFR mutations, 12 (6%) had HER2 mutations, 10 (5%) had ALK fusions all involving EML4 as the 5' partner, 4 (2%) had KRAS mutations, and 2 (1%) harbored ROS1 fusions. No BRAF mutation were detected. CONCLUSION:The vast majority (176 of 202; 87.1%, 95% CI: 0.82 to 0.91) of lung adenocarcinomas from never smokers harbor mutant kinases sensitive to available TKIs. Interestingly, patients with EGFR mutant patients tend to be older than those without EGFR mutations (58.3 Vs 54.3, P = 0.016) and patient without any known oncogenic driver tend to be diagnosed at a younger age (52.3 Vs 57.9, P = 0.013). Collectively, these data indicate that the majority of never smokers with lung adenocarcinoma could benefit from treatment with a specific tyrosine kinase inhibitor
Psychosocial impact of implantable cardioverter defibrillators (ICD) in young adults with Tetralogy of Fallot
Item does not contain fulltextOBJECTIVE: To investigate the psychosocial impact of having an implantable cardioverter defibrillator (ICD) in adults with Tetralogy of Fallot (ToF). METHODS: Included were 26 ToF-patients with an ICD (age 44 +/- 12 years), and two control groups consisting of 28 ToF-patients without an ICD (age 40 +/- 10 years) and a group of 35 ICD-patients of older age without ToF (age 72.0 +/- 8 years). This last control group was chosen to represent the "older general ICD population" with acquired heart disease seen at the out-patient clinic. Psychosocial functioning encompassed daily functioning, subjective health status, quality of life, anxiety, depression, coping and social support. RESULTS: ToF-patients with ICD showed diminished psychosocial functioning in comparison to ToF-patients without ICD. This was reflected by diminished subjectively perceived physical functioning (p = 0.01), general health perception (p < 0.01) and a lower satisfaction with life (p = 0.02). In comparison to older ICD-patients, ToF-patients with ICD showed less satisfaction with life (p = 0.03), experienced more anxiety (p = 0.01) and showed less favourable coping styles, although physical functioning was better for ToF-patients with ICD than for older ICD-patients (p = 0.01). More inappropriate shocks were found in ToF-patients with ICD compared to the older ICD-patients. CONCLUSION: In patients with ToF, ICD implantation had a major impact on psychosocial functioning which should be taken into account when considering ICD implantation in these young patients. To help improve psychosocial functioning, psychological counselling attuned to the specific needs of these patients may be useful.1 juli 201
A Pandemic Influenza H1N1 Live Vaccine Based on Modified Vaccinia Ankara Is Highly Immunogenic and Protects Mice in Active and Passive Immunizations
The development of novel influenza vaccines inducing a broad immune response is an important objective. The aim of this study was to evaluate live vaccines which induce both strong humoral and cell-mediated immune responses against the novel human pandemic H1N1 influenza virus, and to show protection in a lethal animal challenge model.For this purpose, the hemagglutinin (HA) and neuraminidase (NA) genes of the influenza A/California/07/2009 (H1N1) strain (CA/07) were inserted into the replication-deficient modified vaccinia Ankara (MVA) virus - a safe poxviral live vector – resulting in MVA-H1-Ca and MVA-N1-Ca vectors. These live vaccines, together with an inactivated whole virus vaccine, were assessed in a lung infection model using immune competent Balb/c mice, and in a lethal challenge model using severe combined immunodeficient (SCID) mice after passive serum transfer from immunized mice. Balb/c mice vaccinated with the MVA-H1-Ca virus or the inactivated vaccine were fully protected from lung infection after challenge with the influenza H1N1 wild-type strain, while the neuraminidase virus MVA-N1-Ca induced only partial protection. The live vaccines were already protective after a single dose and induced substantial amounts of neutralizing antibodies and of interferon-γ-secreting (IFN-γ) CD4- and CD8 T-cells in lungs and spleens. In the lungs, a rapid increase of HA-specific CD4- and CD8 T cells was observed in vaccinated mice shortly after challenge with influenza swine flu virus, which probably contributes to the strong inhibition of pulmonary viral replication observed. In addition, passive transfer of antisera raised in MVA-H1-Ca vaccinated immune-competent mice protected SCID mice from lethal challenge with the CA/07 wild-type virus.The non-replicating MVA-based H1N1 live vaccines induce a broad protective immune response and are promising vaccine candidates for pandemic influenza
The chemical interactome space between the human host and the genetically defined gut metabotypes
The bacteria that colonize the gastrointestinal tracts of mammals represent a highly selected microbiome that has a profound influence on human physiology by shaping the host's metabolic and immune system activity. Despite the recent advances on the biological principles that underlie microbial symbiosis in the gut of mammals, mechanistic understanding of the contributions of the gut microbiome and how variations in the metabotypes are linked to the host health are obscure. Here, we mapped the entire metabolic potential of the gut microbiome based solely on metagenomics sequencing data derived from fecal samples of 124 Europeans (healthy, obese and with inflammatory bowel disease). Interestingly, three distinct clusters of individuals with high, medium and low metabolic potential were observed. By illustrating these results in the context of bacterial population, we concluded that the abundance of the Prevotella genera is a key factor indicating a low metabolic potential. These metagenome-based metabolic signatures were used to study the interaction networks between bacteria-specific metabolites and human proteins. We found that thirty-three such metabolites interact with disease-relevant protein complexes several of which are highly expressed in cells and tissues involved in the signaling and shaping of the adaptive immune system and associated with squamous cell carcinoma and bladder cancer. From this set of metabolites, eighteen are present in DrugBank providing evidence that we carry a natural pharmacy in our guts. Furthermore, we established connections between the systemic effects of non-antibiotic drugs and the gut microbiome of relevance to drug side effects and health-care solutions.link_to_subscribed_fulltex
Learn2Reg: comprehensive multi-task medical image registration challenge, dataset and evaluation in the era of deep learning
Image registration is a fundamental medical image analysis task, and a wide
variety of approaches have been proposed. However, only a few studies have
comprehensively compared medical image registration approaches on a wide range
of clinically relevant tasks. This limits the development of registration
methods, the adoption of research advances into practice, and a fair benchmark
across competing approaches. The Learn2Reg challenge addresses these
limitations by providing a multi-task medical image registration data set for
comprehensive characterisation of deformable registration algorithms. A
continuous evaluation will be possible at
https://learn2reg.grand-challenge.org. Learn2Reg covers a wide range of
anatomies (brain, abdomen, and thorax), modalities (ultrasound, CT, MR),
availability of annotations, as well as intra- and inter-patient registration
evaluation. We established an easily accessible framework for training and
validation of 3D registration methods, which enabled the compilation of results
of over 65 individual method submissions from more than 20 unique teams. We
used a complementary set of metrics, including robustness, accuracy,
plausibility, and runtime, enabling unique insight into the current
state-of-the-art of medical image registration. This paper describes datasets,
tasks, evaluation methods and results of the challenge, as well as results of
further analysis of transferability to new datasets, the importance of label
supervision, and resulting bias. While no single approach worked best across
all tasks, many methodological aspects could be identified that push the
performance of medical image registration to new state-of-the-art performance.
Furthermore, we demystified the common belief that conventional registration
methods have to be much slower than deep-learning-based methods
Long Noncoding RNA-Directed Epigenetic Regulation of Gene Expression Is Associated With Anxiety-like Behavior in Mice
Background RNA-directed regulation of epigenetic processes has recently emerged as an important feature of mammalian differentiation and development. Perturbation of this regulatory system in the brain may contribute to the development of neuropsychiatric disorders. Methods RNA sequencing was used to identify changes in the experience-dependent expression of long noncoding RNAs (lncRNAs) within the medial prefrontal cortex of adult mice. Transcripts were validated by real-time quantitative polymerase chain reaction and a candidate lncRNA, Gomafu, was selected for further investigation. The functional role of this schizophrenia-related lncRNA was explored in vivo by antisense oligonucleotide-mediated gene knockdown in the medial prefrontal cortex, followed by behavioral training and assessment of fear-related anxiety. Long noncoding RNA-directed epigenetic regulation of gene expression was investigated by chromatin and RNA immunoprecipitation assays. Results RNA sequencing analysis revealed changes in the expression of a significant number of genes related to neural plasticity and stress, as well as the dynamic regulation of lncRNAs. In particular, we detected a significant downregulation of Gomafu lncRNA. Our results revealed that Gomafu plays a role in mediating anxiety-like behavior and suggest that this may occur through an interaction with a key member of the polycomb repressive complex 1, BMI1, which regulates the expression of the schizophrenia-related gene beta crystallin (Crybb1). We also demonstrated a novel role for Crybb1 in mediating fear-induced anxiety-like behavior. Conclusions Experience-dependent expression of lncRNAs plays an important role in the epigenetic regulation of adaptive behavior, and the perturbation of Gomafu may be related to anxiety and the development of neuropsychiatric disorders
- …