195 research outputs found

    The long-wavelength admittance and effective elastic thickness of the Canadian Shield

    Get PDF
    The strength of the cratonic lithosphere has been controversial. On the one hand, many estimates of effective elastic thickness (Te) greatly exceed the crustal thickness, but on the other the great majority of cratonic earthquakes occur in the upper crust. This implies that the seismogenic thickness of cratons is much smaller than Te, whereas in the ocean basins they are approximately the same, leading to suspicions about the large Te estimates. One region where such estimates have been questioned is the Canadian Shield, where glacial isostatic adjustment (GIA) and mantle convection are thought to contribute to the long-wavelength undulations of the topography and gravity. To date these have not been included in models used to estimate Te from topography and gravity which conventionally are based only on loading and flexure. Here we devise a theoretical expression for the free-air (gravity/topography) admittance that includes the effects of GIA and convection as well as flexure and use it to estimate Te over the Canadian Shield. We use wavelet transforms for estimating the observed admittances, after showing that multitaper estimates, which have hitherto been popular for Te studies, have poor resolution at the long wavelengths where GIA and convection predominate, compared to wavelets. Our results suggest that Te over most of the shield exceeds 80 km, with a higher-Te core near the south-west shore of Hudson Bay. This means that the lack of mantle earthquakes in this craton is simply due to its high strength compared to the applied stresses

    Charge Form Factor and Cluster Structure of 6^6Li Nucleus

    Full text link
    The charge form factor of 6{}^6Li nucleus is considered on the basis of its cluster structure. The charge density of 6{}^6Li is presented as a superposition of two terms. One of them is a folded density and the second one is a sum of 4{}^4He and the deuteron densities. Using the available experimental data for 4{}^4He and deuteron charge form factors, a good agreement of the calculations within the suggested scheme is obtained with the experimental data for the charge form factor of 6{}^6Li, including those in the region of large transferred momenta.Comment: 12 pages 5 figure

    Global Study of Nuclear Structure Functions

    Full text link
    We present the results of a phenomenological study of unpolarized nuclear structure functions for a wide kinematical region of x and Q^2. As a basis of our phenomenology we develop a model which takes into account a number of different nuclear effects including nuclear shadowing, Fermi motion and binding, nuclear pion excess and off-shell correction to bound nucleon structure functions. Within this approach we perform a statistical analysis of available data on the ratio of the nuclear structure functions F_2 for different nuclei in the range from the deuteron to the lead. We express the off-shell effect and the effective scattering amplitude describing nuclear shadowing in terms of few parameters which are common to all nuclei and have a clear physical interpretation. The parameters are then extracted from statistical analysis of data. As a result, we obtain an excellent overall agreement between our calculations and data in the entire kinematical region of x and Q^2. We discuss a number of applications of our model which include the calculation of the deuteron structure functions, nuclear valence and sea quark distributions and nuclear structure functions for neutrino charged-current scattering.Comment: 67 pages, 18 figures (v3: updated text and references, a new section with discussion about relation between off-shell effect and modification of the nucleon size in nuclei, accepted for publication in Nucl. Phys. A

    Thermal and tectonic consequences of India underthrusting Tibet

    Get PDF
    The Tibetan Plateau is the largest orogenic system on Earth, and has been influential in our understanding of how the continental lithosphere deforms. Beneath the plateau are some of the deepest ( ~ 100 ) earthquakes observed within the continental lithosphere, which have been pivotal in ongoing debates about the rheology and behaviour of the continents. We present new observations of earthquake depths from the region, and use thermal models to suggest that all of them occur in material at temperatures of â‰Č600 °C. Thermal modelling, combined with experimentally derived flow laws, suggests that if the Indian lower crust is anhydrous it will remain strong beneath the entire southern half of the Tibetan plateau, as is also suggested by dynamic models. In northwest Tibet, the strong underthrust Indian lower crust abuts the rigid Tarim Basin, and may be responsible for both the clockwise rotation of Tarim relative to stable Eurasia and the gradient of shortening along the Tien Shan

    Residential Security Maps and Neighborhood Appraisals. The Homeowners\u27 Loan Corporation and the Case of Philadelphia

    Get PDF
    At the request of the Home Loan Bank Board, the Home Owners’ Loan Corporation (HOLC) created color-coded maps for cities across the country between 1935 and 1940 that indicated risk levels for long-term real estate investment. Involvement in this City Survey Program marked a departure from the original mission of HOLC to provide new mortgages on an emergency basis to homeowners at risk of losing their homes during the Depression. This article considers why HOLC made these maps, how HOLC created them, and what the basis was for the grades on the maps. Geographic information systems and spatial regression models are used to show that racial composition was a significant predictor of map grades, controlling for housing characteristics

    Southern San Andreas-San Jacinto fault system slip rates estimated from earthquake cycle models constrained by GPS and interferometric synthetic aperture radar observations

    Get PDF
    We use ground geodetic and interferometric synthetic aperture radar satellite observations across the southern San Andreas (SAF)-San Jacinto (SJF) fault systems to constrain their slip rates and the viscosity structure of the lower crust and upper mantle on the basis of periodic earthquake cycle, Maxwell viscoelastic, finite element models. Key questions for this system are the SAF and SJF slip rates, the slip partitioning between the two main branches of the SJF, and the dip of the SAF. The best-fitting models generally have a high-viscosity lower crust (η = 10^(21) Pa s) overlying a lower-viscosity upper mantle (η = 10^(19) Pa s). We find considerable trade-offs between the relative time into the current earthquake cycle of the San Jacinto fault and the upper mantle viscosity. With reasonable assumptions for the relative time in the earthquake cycle, the partition of slip is fairly robust at around 24–26 mm/a for the San Jacinto fault system and 16–18 mm/a for the San Andreas fault. Models for two subprofiles across the SAF-SJF systems suggest that slip may transfer from the western (Coyote Creek) branch to the eastern (Clark-Superstition hills) branch of the SJF from NW to SE. Across the entire system our best-fitting model gives slip rates of 2 ± 3, 12 ± 9, 12 ± 9, and 17 ± 3 mm/a for the Elsinore, Coyote Creek, Clark, and San Andreas faults, respectively, where the large uncertainties in the slip rates for the SJF branches reflect the large uncertainty in the slip rate partitioning within the SJF system

    Machine layout and performance

    Get PDF
    The Large Hadron Collider (LHC) is one of the largest scientific instruments ever built. Since opening up a new energy frontier for exploration in 2010, it has gathered a global user community of about 7,000 scientists working in fundamental particle physics and the physics of hadronic matter at extreme temperature and density. To sustain and extend its discovery potential, the LHC will need a major upgrade in the 2020s. This will increase its luminosity (rate of collisions) by a factor of five beyond the original design value and the integrated luminosity (total collisions created) by a factor ten. The LHC is already a highly complex and exquisitely optimised machine so this upgrade must be carefully conceived and will require about ten years to implement. The new configuration, known as High Luminosity LHC (HL-LHC), will rely on a number of key innovations that push accelerator technology beyond its present limits. Among these are cutting-edge 11-12 tesla superconducting magnets, compact superconducting cavities for beam rotation with ultra-precise phase control, new technology and physical processes for beam collimation and 300 metre-long high-power superconducting links with negligible energy dissipation. The present document describes the technologies and components that will be used to realise the project and is intended to serve as the basis for the detailed engineering design of HL-LHC
    • 

    corecore