310 research outputs found

    Reprocessing the Hipparcos data for evolved stars III Revised Hipparcos period-luminosity relationship for galactic long-period variable stars

    Get PDF
    We analyze the K band luminosities of a sample of galactic long-period variables using parallaxes measured by the Hipparcos mission. The parallaxes are in most cases re-computed from the Hipparcos Intermediate Astrometric Data using improved astrometric fits and chromaticity corrections. The K band magnitudes are taken from the literature and from measurements by COBE, and are corrected for interstellar and circumstellar extinction. The sample contains stars of several spectral types: M, S and C, and of several variability classes: Mira, semiregular SRa, and SRb. We find that the distribution of stars in the period-luminosity plane is independent of circumstellar chemistry, but that the different variability types have different P-L distributions. Both the Mira variables and the SRb variables have reasonably well-defined period-luminosity relationships, but with very different slopes. The SRa variables are distributed between the two classes, suggesting that they are a mixture of Miras and SRb, rather than a separate class of stars. New period-luminosity relationships are derived based on our revised Hipparcos parallaxes. The Miras show a similar period-luminosity relationship to that found for Large Magellanic Cloud Miras by Feast et al. (1989). The maximum absolute K magnitude of the sample is about -8.2 for both Miras and semi-regular stars, only a little fainter than the expected AGB limit. We show that the stars with the longest periods (P>400d) have high mass loss rates and are almost all Mira variables.Comment: Comments welcome. Submitted to A&A 11 pages, 7 figs, 3 table

    Synthetic photometry for carbon-rich giants II. The effects of pulsation and circumstellar dust

    Full text link
    By using self-consistent dynamic model atmospheres which simulate pulsation-enhanced dust-driven winds of AGB stars we studied in detail the influence of (i) pulsations of the stellar interiors, and (ii) the development of dusty stellar winds on the spectral appearance of long period variables with carbon-rich atmospheric chemistry. While the pulsations lead to large-amplitude photometric variability, the dusty envelopes cause pronounced circumstellar reddening. Based on one selected dynamical model which is representative of C-type Mira variables with intermediate mass loss rates, we calculated synthetic spectra and photometry for standard broad-band filters from the visual to the near-infrared. Our modelling allows to investigate in detail the substantial effect of circumstellar dust on the resultant photometry. The pronounced absorption of amorphous carbon dust grains leads to colour indices which are significantly redder than the corresponding ones based on hydrostatic dust-free models. Only if we account for this circumstellar reddening we get synthetic colours that are comparable to observations of evolved AGB stars. The photometric variations of the dynamical model were compared to observed lightcurves of the C-type Mira RU_Vir which appears to be quite similar to the model. We found good agreement concerning the principal behaviour of the BVRIJHKL lightcurves and also quantitatively fitting details. The analysed model is able to reproduce the variations of RU_Vir and other Miras in (J-H) vs. (H-K) diagrams throughout the light cycle. Contrasting the model photometry with observational data for a variety of galactic C-rich giants in such colour-colour diagrams proved that the chosen atmospheric model fits well into a sequence of objects with increasing mass loss rates, i.e., redder colour indices.Comment: Accepted for publication in A&

    Discovery of a peculiar Cepheid-like star towards the northern edge of the Small Magellanic Cloud

    Full text link
    For seven years, the EROS-2 project obtained a mass of photometric data on variable stars. We present a peculiar Cepheid-like star, in the direction of the Small Magellanic Cloud, which demonstrates unusual photometric behaviour over a short time interval. We report on data of the photometry acquired by the MARLY telescope and spectroscopy from the EFOSC instrument for this star, called EROS2 J005135-714459(sm0060n13842), which resembles the unusual Cepheid HR 7308. The light curve of our target is analysed using the Analysis of Variance method to determine a pulsational period of 5.5675 days. A fit of time-dependent Fourier coefficients is performed and a search for proper motion is conducted. The light curve exhibits a previously unobserved and spectacular change in both mean magnitude and amplitude, which has no clear theoretical explanation. Our analysis of the spectrum implies a radial velocity of 104 km s−1^{-1} and a metallicity of -0.4±\pm0.2 dex. In the direction of right ascension, we measure a proper motion of 17.4±\pm6.0 mas yr−1^{-1} using EROS astrometry, which is compatible with data from the NOMAD catalogue. The nature of EROS2 J005135-714459(sm0060n13842) remains unclear. For this star, we may have detected a non-zero proper motion for this star, which would imply that it is a foreground object. Its radial velocity, pulsational characteristics, and photometric data, however, suggest that it is instead a Cepheid-like object located in the SMC. In such a case, it would present a challenge to conventional Cepheid models.Comment: Correction of typos in the abstrac

    Hypoxia Regulates BMP4 Expression in the Murine Spleen during the Recovery from Acute Anemia

    Get PDF
    Bone marrow erythropoiesis is primarily homeostatic, producing new erythrocytes at a constant rate. However at times of acute anemia, new erythrocytes must be rapidly produced much faster than bone marrow steady state erythropoiesis. At these times stress erythropoiesis predominates. Stress erythropoiesis occurs in the fetal liver during embryogenesis and in the adult spleen and liver. In adult mice, stress erythropoiesis utilizes a specialized population of stress erythroid progenitors that are resident in the spleen. In response to acute anemia, these progenitors rapidly expand and differentiate in response to three signals, BMP4, SCF and hypoxia. In absence of acute anemic stress, two of these signals, BMP4 and hypoxia, are not present and the pathway is not active. The initiating event in the activation of this pathway is the up-regulation of BMP4 expression in the spleen.In this paper we analyze the regulation of BMP4 expression in the spleen by hypoxia. Using stromal cell lines, we establish a role for hypoxia transcription factor HIFs (Hypoxia Inducible Factors) in the transcription of BMP4. We identified putative Hypoxia Responsive Elements (HREs) in the BMP4 gene using bioinformatics. Analysis of these elements showed that in vivo, Hif2alpha binds two cis regulatory sites in the BMP4 gene, which regulate BMP4 expression during the recovery from acute anemia.These data show that hypoxia plays a key role in initiating the BMP4 dependent stress erythropoiesis pathway by regulating BMP4 expression

    Identification of red high proper-motion objects in Tycho-2 and 2MASS catalogues using Virtual Observatory tools

    Get PDF
    Aims: With available Virtual Observatory tools, we looked for new M dwarfs in the solar neighbourhood and M giants with high tangential velocities. Methods: From an all-sky cross-match between the optical Tycho-2 and the near-infrared 2MASS catalogues, we selected objects with proper motions >50mas/yr and very red V-Ks colours. For the most interesting targets, we collected multi-wavelength photometry, constructed spectral energy distributions, estimated effective temperatures and surface gravities from fits to atmospheric models, performed time-series analysis of ASAS V-band light curves, and assigned spectral types from low-resolution spectroscopy obtained with CAFOS at the 2.2m Calar Alto telescope. Results: We got a sample of 59 bright red high proper-motion objects, including fifty red giants, four red dwarfs, and five objects reported in this work for the first time. The five new stars have magnitudes V~10.8-11.3mag, reduced proper motions midway between known dwarfs and giants, near-infrared colours typical of giants, and effective temperatures Teff~2900-3400K. From our time-series analysis, we discovered a long secondary period in Ruber 4 and an extremely long primary period in Ruber 6. With the CAFOS spectra, we confirmed the red giant nature of Ruber 7 and 8, the last of which seems to be one of the brightest metal-poor M giants ever identified.Comment: Accepted in Astronomy & Astrophysic

    Strategy selection and outcome prediction in sport using dynamic learning for stochastic processes

    Get PDF
    We study reliability equivalence factors of a system of independent and identical components with exponentiated Weibull lifetimes. The system has n subsystems connected in parallel and subsystem i has mi components connected in series, i=1,…,n. We consider improving the reliability of the system by (a) a reduction method and (b) several duplication methods: (i) hot duplication; (ii) cold duplication with perfect switching; (iii) cold duplication with imperfect switching. We compute two types of reliability equivalence factors: survival equivalence factors and mean equivalence factors. Although our methods adapt to allow for general lifetime models, we use the exponentiated Weibull distribution because it is flexible and enables comparisons with other reliability equivalence studies. The example we present demonstrates the potential for applying these methods to address specific questions that arise when attempting to improve the reliability of simple systems or simple configurations of possibly complex subsystems in many diverse applications

    Catalog of Galactic Beta Cephei Stars

    Full text link
    We present an extensive and up-to-date catalog of Galactic Beta Cephei stars. This catalog is intended to give a comprehensive overview of observational characteristics of all known Beta Cephei stars. 93 stars could be confirmed to be Beta Cephei stars. For some stars we re-analyzed published data or conducted our own analyses. 61 stars were rejected from the final Beta Cephei list, and 77 stars are suspected to be Beta Cephei stars. A list of critically selected pulsation frequencies for confirmed Beta Cephei stars is also presented. We analyze the Beta Cephei stars as a group, such as the distributions of their spectral types, projected rotational velocities, radial velocities, pulsation periods, and Galactic coordinates. We confirm that the majority of these stars are multiperiodic pulsators. We show that, besides two exceptions, the Beta Cephei stars with high pulsation amplitudes are slow rotators. We construct a theoretical HR diagram that suggests that almost all 93 Beta Cephei stars are MS objects. We discuss the observational boundaries of Beta Cephei pulsation and their physical parameters. We corroborate that the excited pulsation modes are near to the radial fundamental mode in frequency and we show that the mass distribution of the stars peaks at 12 solar masses. We point out that the theoretical instability strip of the Beta Cephei stars is filled neither at the cool nor at the hot end and attempt to explain this observation
    • …
    corecore