10 research outputs found

    Avian Influenza Viruses in Water Birds, Africa1

    Get PDF
    We report the first large-scale surveillance of avian influenza viruses in water birds conducted in Africa. This study shows evidence of avian influenza viruses in wild birds, both Eurasian and Afro-tropical species, in several major wetlands of Africa

    Effects of African dust deposition on phytoplankton in the western tropical Atlantic Ocean off Barbados

    Get PDF
    Bioassay incubation experiments conducted with nutrients and local atmospheric aerosol amendments indicate that phosphorus (P) availability limited phytoplankton growth in the low-nutrient low-chlorophyll (LNLC) ocean off Barbados. Atmospheric deposition provides a relatively large influx of new nutrients and trace metals to the surface ocean in this region in comparison to other nutrient sources. However, the impact on native phytoplankton is muted due to the high ratio of nitrogen (N) to P (NO3:SRP > 40) and the low P solubility of these aerosols. Atmospheric deposition induces P limitation in this LNLC region by adding more N and iron (Fe) relative to P. This favors the growth of Prochlorococcus, a genus characterized by low P requirements and highly efficient P acquisition mechanisms. A global three-dimensional marine ecosystem model that includes species-specific phytoplankton elemental quotas/stoichiometry and the atmospheric deposition of N, P, and Fe supports this conclusion. Future increases in aerosol N loading may therefore influence phytoplankton community structure in other LNLC areas, thereby affecting the biological pump and associated carbon sequestration

    Climate-driven chemistry and aerosol feedbacks in CMIP6 Earth system models

    Get PDF
    Feedbacks play a fundamental role in determining the magnitude of the response of the climate system to external forcing, such as from anthropogenic emissions. The latest generation of Earth system models include aerosol and chemistry components that interact with each other and with the biosphere. These interactions introduce a complex web of feedbacks which it is important to understand and quantify. This paper addresses multiple pathways for aerosol and chemical feedbacks in Earth system models. These focus on changes in natural emissions (dust, sea salt, di-methyl sulphide, biogenic volatile organic compounds (BVOCs) and lightning) and changes in reaction rates for methane and ozone chemistry. The feedback terms are then given by the sensitivity of a pathway to climate change multiplied by the radiative effect of the change. We find that the overall climate feedback through chemistry and aerosols is negative in the sixth coupled model intercomparison project (CMIP6) Earth system models due to increased negative forcing from aerosols in a climate with warmer surface temperatures following a quadrupling of CO2 concentrations. This is principally due to increased emissions of sea salt and BVOCs which are both sensitive to climate change, and cause strong negative radiative forcings. Increased chemical loss of ozone and methane also contributes to a negative feedback. However overall methane lifetime is expected to increase in a warmer climate due to increased BVOCs. Increased emissions of methane from wetlands would also offset some of the negative feedbacks. The CMIP6 experimental design did not allow the methane lifetime or methane emission changes to affect climate so we find a robust negative contribution from interactive aerosols and chemistry to climate sensitivity in CMIP6 Earth system models

    Myeloid HIF-1 is protective in Helicobacter pylori-mediated gastritis.

    Get PDF
    International audienceHelicobacter pylori infection triggers chronic inflammation of the gastric mucosa that may progress to gastric cancer. The hypoxia-inducible factors (HIFs) are the central mediators of cellular adaptation to low oxygen levels (hypoxia), but they have emerged recently as major transcriptional regulators of immunity and inflammation. No studies have investigated whether H. pylori affects HIF signaling in immune cells and a potential role for HIF in H. pylori-mediated gastritis. HIF-1 and HIF-2 expression was examined in human H. pylori-positive gastritis biopsies. Subsequent experiments were performed in naive and polarized bone marrow-derived macrophages from wild-type (WT) and myeloid HIF-1α-null mice (HIF-1(Δmyel)). WT and HIF-1(Δmyel) mice were inoculated with H. pylori by oral gavage and sacrificed 6 mo postinfection. HIF-1 was specifically expressed in macrophages of human H. pylori-positive gastritis biopsies. Macrophage HIF-1 strongly contributed to the induction of proinflammatory genes (IL-6, IL-1β) and inducible NO synthase in response to H. pylori. HIF-2 expression and markers of M2 macrophage differentiation were decreased in response to H. pylori. HIF-1(Δmyel) mice inoculated with H. pylori for 6 mo presented with a similar bacterial colonization than WT mice but, surprisingly, a global increase of inflammation, leading to a worsening of the gastritis, measured by an increased epithelial cell proliferation. In conclusion, myeloid HIF-1 is protective in H. pylori-mediated gastritis, pointing to the complex counterbalancing roles of innate immune and inflammatory phenotypes in driving this pathology

    Intra-database validation of case-identifying algorithms using reconstituted electronic health records from healthcare claims data

    Get PDF
    BACKGROUND: Diagnosis performances of case-identifying algorithms developed in healthcare database are usually assessed by comparing identified cases with an external data source. When this is not feasible, intra-database validation can present an appropriate alternative. OBJECTIVES: To illustrate through two practical examples how to perform intra-database validations of case-identifying algorithms using reconstituted Electronic Health Records (rEHRs). METHODS: Patients with 1) multiple sclerosis (MS) relapses and 2) metastatic castration-resistant prostate cancer (mCRPC) were identified in the French nationwide healthcare database (SNDS) using two case-identifying algorithms. A validation study was then conducted to estimate diagnostic performances of these algorithms through the calculation of their positive predictive value (PPV) and negative predictive value (NPV). To that end, anonymized rEHRs were generated based on the overall information captured in the SNDS over time (e.g. procedure, hospital stays, drug dispensing, medical visits) for a random selection of patients identified as cases or non-cases according to the predefined algorithms. For each disease, an independent validation committee reviewed the rEHRs of 100 cases and 100 non-cases in order to adjudicate on the status of the selected patients (true case/ true non-case), blinded with respect to the result of the corresponding algorithm. RESULTS: Algorithm for relapses identification in MS showed a 95% PPV and 100% NPV. Algorithm for mCRPC identification showed a 97% PPV and 99% NPV. CONCLUSION: The use of rEHRs to conduct an intra-database validation appears to be a valuable tool to estimate the performances of a case-identifying algorithm and assess its validity, in the absence of alternative

    Mapping Yearly Fine Resolution Global Surface Ozone through the Bayesian Maximum Entropy Data Fusion of Observations and Model Output for 1990–2017

    No full text
    Estimates of ground-level ozone concentrations are necessary to determine the human health burden of ozone. To support the Global Burden of Disease Study, we produce yearly fine resolution global surface ozone estimates from 1990 to 2017 through a data fusion of observations and models. As ozone observations are sparse in many populated regions, we use a novel combination of the M3Fusion and Bayesian Maximum Entropy (BME) methods. With M3Fusion, we create a multimodel composite by bias-correcting and weighting nine global atmospheric chemistry models based on their ability to predict observations (8834 sites globally) in each region and year. BME is then used to integrate observations, such that estimates match observations at each monitoring site with the observational influence decreasing smoothly across space and time until the output matches the multimodel composite. After estimating at 0.5° resolution using BME, we add fine spatial detail from an additional model, yielding estimates at 0.1° resolution. Observed ozone is predicted more accurately (R2 = 0.81 at the test point, 0.63 at 0.1°, and 0.62 at 0.5°) than the multimodel mean (R2 = 0.28 at 0.5°). Global ozone exposure is estimated to be increasing, driven by highly populated regions of Asia and Africa, despite decreases in the United States and Russia

    Climate-driven chemistry and aerosol feedbacks in CMIP6 Earth system models

    No full text
    Feedbacks play a fundamental role in determining the magnitude of the response of the climate system to external forcing, such as from anthropogenic emissions. The latest generation of Earth system models includes aerosol and chemistry components that interact with each other and with the biosphere. These interactions introduce a complex web of feedbacks that is important to understand and quantify. This paper addresses multiple pathways for aerosol and chemical feedbacks in Earth system models. These focus on changes in natural emissions (dust, sea salt, dimethyl sulfide, biogenic volatile organic compounds (BVOCs) and lightning) and changes in reaction rates for methane and ozone chemistry. The feedback terms are then given by the sensitivity of a pathway to climate change multiplied by the radiative effect of the change. We find that the overall climate feedback through chemistry and aerosols is negative in the sixth Coupled Model Intercomparison Project (CMIP6) Earth system models due to increased negative forcing from aerosols in a climate with warmer surface temperatures following a quadrupling of CO2 concentrations. This is principally due to increased emissions of sea salt and BVOCs which are sensitive to climate change and cause strong negative radiative forcings. Increased chemical loss of ozone and methane also contributes to a negative feedback. However, overall methane lifetime is expected to increase in a warmer climate due to increased BVOCs. Increased emissions of methane from wetlands would also offset some of the negative feedbacks. The CMIP6 experimental design did not allow the methane lifetime or methane emission changes to affect climate, so we found a robust negative contribution from interactive aerosols and chemistry to climate sensitivity in CMIP6 Earth system models
    corecore