34 research outputs found

    Dynamics of Airborne Influenza A Viruses Indoors and Dependence on Humidity

    Get PDF
    There is mounting evidence that the aerosol transmission route plays a significant role in the spread of influenza in temperate regions and that the efficiency of this route depends on humidity. Nevertheless, the precise mechanisms by which humidity might influence transmissibility via the aerosol route have not been elucidated. We hypothesize that airborne concentrations of infectious influenza A viruses (IAVs) vary with humidity through its influence on virus inactivation rate and respiratory droplet size. To gain insight into the mechanisms by which humidity might influence aerosol transmission, we modeled the size distribution and dynamics of IAVs emitted from a cough in typical residential and public settings over a relative humidity (RH) range of 10–90%. The model incorporates the size transformation of virus-containing droplets due to evaporation and then removal by gravitational settling, ventilation, and virus inactivation. The predicted concentration of infectious IAVs in air is 2.4 times higher at 10% RH than at 90% RH after 10 min in a residential setting, and this ratio grows over time. Settling is important for removal of large droplets containing large amounts of IAVs, while ventilation and inactivation are relatively more important for removal of IAVs associated with droplets <5 µm. The inactivation rate increases linearly with RH; at the highest RH, inactivation can remove up to 28% of IAVs in 10 min. Humidity is an important variable in aerosol transmission of IAVs because it both induces droplet size transformation and affects IAV inactivation rates. Our model advances a mechanistic understanding of the aerosol transmission route, and results complement recent studies on the relationship between humidity and influenza's seasonality. Maintaining a high indoor RH and ventilation rate may help reduce chances of IAV infection

    Non-neoclassical up/down asymmetry of impurity emission on Alcator C-Mod

    Get PDF
    We demonstrate that existing theories are insufficient to explain up/down asymmetries of argon x-ray emission in Alcator C-Mod ohmic plasmas. Instead of the poloidal variation, ñ[subscript z]/〈n[subscript z]〉, being of order the inverse aspect ratio, ϵ, and scaling linearly with B[subscript t][superscript _ over n][subscript e]/I[2 over p], it is observed over 0.8 < r/a < 1.0 to be of order unity and exhibits a threshold behaviour between 3.5 <B[subscript t][superscript _ over n][subscript e]/I[subscript p] < 4.0 (T10[superscript 20] m[superscript −3] MA[superscript −1]). The transition from a poloidally symmetric to asymmetric impurity distribution is shown to occur at densities just below those that trigger a reversal of the core toroidal rotation direction, thought to be linked to the transition between the linear and saturated ohmic confinement regimes. A possible drive is discussed by which anomalous radial transport might sustain the impurity density asymmetry as the ratio of the perpendicular to parallel equilibration times, τ[subscript ⊥,z]/τ[subscript ∥,z], approaches unity. This explanation requires a strong up/down asymmetry in radial flux which, while not observable on C-Mod, has been measured in TEXT and Tore Supra ohmic plasmas.United States. Dept. of Energy (Contract DE-FC02-99ER54512)United States. Dept. of Energy (Fusion Research Postdoctoral Research Program

    Practical Indicators for Risk of Airborne Transmission in Shared Indoor Environments and Their Application to COVID-19 Outbreaks

    Get PDF
    Some infectious diseases, including COVID-19, can undergo airborne transmission. This may happen at close proximity, but as time indoors increases, infections can occur in shared room air despite distancing. We propose two indicators of infection risk for this situation, that is, relative risk parameter (Hr) and risk parameter (H). They combine the key factors that control airborne disease transmission indoors: virus-containing aerosol generation rate, breathing flow rate, masking and its quality, ventilation and aerosol-removal rates, number of occupants, and duration of exposure. COVID-19 outbreaks show a clear trend that is consistent with airborne infection and enable recommendations to minimize transmission risk. Transmission in typical prepandemic indoor spaces is highly sensitive to mitigation efforts. Previous outbreaks of measles, influenza, and tuberculosis were also assessed. Measles outbreaks occur at much lower risk parameter values than COVID-19, while tuberculosis outbreaks are observed at higher risk parameter values. Because both diseases are accepted as airborne, the fact that COVID-19 is less contagious than measles does not rule out airborne transmission. It is important that future outbreak reports include information on masking, ventilation and aerosol-removal rates, number of occupants, and duration of exposure, to investigate airborne transmission

    Characterization of on-road vehicle emissions in the Mexico City Metropolitan Area using a mobile laboratory in chase and fleet average measurement modes during the MCMA-2003 field campaign

    No full text
    International audienceA mobile laboratory was used to measure on-road vehicle emission ratios during the MCMA-2003 field campaign held during the spring of 2003 in the Mexico City Metropolitan Area (MCMA). The measured emission ratios represent a sample of emissions of in-use vehicles under real world driving conditions for the MCMA. From the relative amounts of NOx and selected VOC's sampled, the results indicate that the technique is capable of differentiating among vehicle categories and fuel type in real world driving conditions. Emission ratios for NOx, NOy, NH3, H2CO, CH3CHO, and other selected volatile organic compounds (VOCs) are presented for chase sampled vehicles in the form of frequency distributions as well as estimates for the fleet averaged emissions. Our measurements of emission ratios for both CNG and gasoline powered "colectivos" (public transportation buses that are intensively used in the MCMA) indicate that ? in a mole per mole basis ? have significantly larger NOx and aldehydes emissions ratios as compared to other sampled vehicles in the MCMA. Similarly, ratios of selected VOCs and NOy showed a strong dependence on traffic mode. These results are compared with the vehicle emissions inventory for the MCMA, other vehicle emissions measurements in the MCMA, and measurements of on-road emissions in U.S. cities. We estimate NOx emissions as 100 600±29 200 metric tons per year for light duty gasoline vehicles in the MCMA for 2003. According to these results, annual NOx emissions estimated in the emissions inventory for this category are within the range of our estimated NOx annual emissions. Our estimates for motor vehicle emissions of benzene, toluene, formaldehyde, and acetaldehyde in the MCMA indicate these species are present in concentrations higher than previously reported. The high motor vehicle aldehyde emissions may have an impact on the photochemistry of urban areas

    Effect of topical anaesthesia on corneal epithelial fragility

    No full text
    The effect of topical anaesthetics on human corneal integrity was assessed by measurement of the alterations they cause in corneal damage threshold. The anaesthetics investigated were 1.0% Amethocaine HCl, assessed immediately after instillation and after delays of 20 min and 60 min, and 0.5% Amethocaine HCl and 0.4% Benoxinate HCl, assessed 20 min after instillation. At 20 min after instillation of 1.0% Amethocaine HCl, the corneal damage threshold was significantly decreased. At other times for this anaesthetic, and for 0.5% Amethocaine HCl and 0.4% Benoxinate HCl, the corneal damage threshold was unaltered

    The role of the ventromedial prefrontal cortex in memory consolidation

    Get PDF
    Contains fulltext : 99828.pdf (publisher's version ) (Open Access)System-level memory consolidation theory posits that the hippocampus initially links the neocortical representations, followed by a shift to a hippocampus-independent neocortical network. With consolidation, an increase in activity in the human subgenual ventromedial prefrontal cortex (vmPFC) has repeatedly been shown. Previously we and others have proposed that this area might link the neocortical representational areas in remote memory, similarly as has been proposed for the rodent anterior cingulate cortex (ACC). Here, we review literature involving the human vmPFC to investigate if the results in other cognitive domains are in line with this proposal. We have taken into account reports on patients with lesions in this area, findings in reward and valuation, fear extinction, and confabulation studies, and integrated these with findings in consolidation studies. We conclude: Firstly, it is unlikely that the rodent ACC is homolog to the human subgenual vmPFC. It is more likely that the rodent infralimbic cortex is, as proposed in the fear extinction literature. Secondly, we propose that the function of the subgenual vmPFC is to integrate information which is represented in separate parts of the limbic system (the hippocampus, the amygdala, and the ventral striatum) and that the integrated representation in the subgenual vmPFC might subsequently be used to suppress irrelevant representations in the limbic system. With the progression of time, the importance of the integrated representation in the subgenual vmPFC increases, because it may replace some direct connectivity across the limbic areas which decays with time.10 p
    corecore