79 research outputs found

    The evolution of Balmer jump selected galaxies in the ALHAMBRA survey

    Full text link
    We present a new color-selection technique, based on the Bruzual & Charlot models convolved with the bands of the ALHAMBRA survey, and the redshifted position of the Balmer jump to select star-forming galaxies in the redshift range 0.5 < z < 1.5. These galaxies are dubbed Balmer jump Galaxies BJGs. We apply the iSEDfit Bayesian approach to fit each detailed SED and determine star-formation rate (SFR), stellar mass, age and absolute magnitudes. The mass of the haloes where these samples reside are found via a clustering analysis. Five volume-limited BJG sub-samples with different mean redshifts are found to reside in haloes of median masses ∌1012.5±0.2M⊙\sim 10^{12.5 \pm 0.2} M_\odot slightly increasing toward z=0.5. This increment is similar to numerical simulations results which suggests that we are tracing the evolution of an evolving population of haloes as they grow to reach a mass of ∌1012.7±0.1M⊙\sim 10^{12.7 \pm 0.1} M_\odot at z=0.5. The likely progenitors of our samples at z∌\sim3 are Lyman Break Galaxies, which at z∌\sim2 would evolve into star-forming BzK galaxies, and their descendants in the local Universe are elliptical galaxies.Hence, this allows us to follow the putative evolution of the SFR, stellar mass and age of these galaxies. From z∌\sim1.0 to z∌\sim0.5, the stellar mass of the volume limited BJG samples nearly does not change with redshift, suggesting that major mergers play a minor role on the evolution of these galaxies. The SFR evolution accounts for the small variations of stellar mass, suggesting that star formation and possible minor mergers are the main channels of mass assembly.Comment: 14 pages, 10 figures. Submitted to A&A. It includes first referee's comments. Abstract abridged due to arXiv requirement

    SDSS IV MaNGA: Dependence of Global and Spatially Resolved SFR-M ∗ Relations on Galaxy Properties

    Get PDF
    IndexaciĂłn: Scopus.The galaxy integrated Hα star formation rate-stellar mass relation, or SFR(global)-M ∗(global) relation, is crucial for understanding star formation history and evolution of galaxies. However, many studies have dealt with SFR using unresolved measurements, which makes it difficult to separate out the contamination from other ionizing sources, such as active galactic nuclei and evolved stars. Using the integral field spectroscopic observations from SDSS-IV MaNGA, we spatially disentangle the contribution from different Hα powering sources for ∌1000 galaxies. We find that, when including regions dominated by all ionizing sources in galaxies, the spatially resolved relation between Hα surface density (ÎŁHα(all)) and stellar mass surface density (Σ∗(all)) progressively turns over at the high Σ∗(all) end for increasing M ∗(global) and/or bulge dominance (bulge-to-total light ratio, B/T). This in turn leads to the flattening of the integrated Hα(global)-M ∗(global) relation in the literature. By contrast, there is no noticeable flattening in both integrated Hα(H ii)-M ∗(H ii) and spatially resolved ÎŁHα(H ii)-Σ∗(H ii) relations when only regions where star formation dominates the ionization are considered. In other words, the flattening can be attributed to the increasing regions powered by non-star-formation sources, which generally have lower ionizing ability than star formation. An analysis of the fractional contribution of non-star-formation sources to total Hα luminosity of a galaxy suggests a decreasing role of star formation as an ionizing source toward high-mass, high-B/T galaxies and bulge regions. This result indicates that the appearance of the galaxy integrated SFR-M ∗ relation critically depends on their global properties (M ∗(global) and B/T) and relative abundances of various ionizing sources within the galaxies.http://iopscience.iop.org/article/10.3847/1538-4357/aaa9bc/met

    Galaxy Clusters in the Line of Sight to Background Quasars: II. Environmental effects on the sizes of baryonic halo sizes

    Full text link
    Based on recent results on the frequency of MgII absorption line systems in the "QSO behind RCS clusters" survey (QbC), we analyse the effects of the cluster environment on the sizes of baryonic haloes around galaxies. We use two independent models, i) an empirical halo occupation model which fits current measurements of the clustering and luminosity function of galaxies at low and high redshifts, and ii) the GALFORM semi-analytic model of galaxy formation, which follows the evolution of the galaxy population from first principles, adjusted to match the statistics of low and high redshift galaxies. In both models we constrain the MgII halo sizes of field and cluster galaxies using observational results on the observed MgII statistics. Our results for the field are in good agreement with previous works, indicating a typical \mgii\ halo size of $r_MgII ~ 50h_71^-1kpc in the semi-analytic model, and slightly lower in the halo occupation number approach. For the cluster environment, we find that both models require a median MgII halo size of r_MgII< 10h_71^-1kpc in order to reproduce the observed statistics on absorption line systems in clusters of galaxies. Based on the Chen & Tinker (2008) result that stronger systems occur closer to the MgII halo centre, we find that strong absorption systems in clusters of galaxies occur at roughly a fixed fraction of the cold-warm halo size out to 1h_71^-1Mpc from the cluster centres. In contrast, weaker absorption systems appear to occur at progressively shorter relative fractions of this halo as the distance to the cluster centre decreases.Comment: 12 pages, 8 figures, accepted for publication in MNRA

    SDSS-IV MaNGA : constraints on the conditions for star formation in galaxy discs

    Get PDF
    Funding: Leverhulme Trust Early Career Fellowship (AW)Regions of disc galaxies with widespread star formation tend to be both gravitationally unstable and self-shielded against ionizing radiation, whereas extended outer discs with little or no star formation tend to be stable and unshielded on average. We explore what drives the transition between these two regimes, specifically whether discs first meet the conditions for self-shielding (parameterized by dust optical depth, τ) or gravitational instability (parameterized by a modified version of Toomre’s instability parameters, Qthermal, which quantifies the stability of a gas disc that is thermally supported at T = 104 K). We first introduce a new metric formed by the product of these quantities, Qthermalτ, which indicates whether the conditions for disk instability or self-shielding are easier to meet in a given region of a galaxy, and we discuss how Qthermalτ can be constrained even in the absence of direct gas information. We then analyse a sample of 13 galaxies with resolved gas measurements and find that on average galaxies will reach the threshold for disk instabilities (Qthermal 1). Using integral field spectroscopic observations of a sample of 236 galaxies from the MaNGA survey, we find that the value of Qthermalτ in star-forming discs is consistent with similar behavior. These results support a scenario where disc fragmentation and collapse occurs before self-shielding, suggesting that gravitational instabilities are the primary condition for widespread star formation in galaxy discs. Our results support similar conclusions based on recent galaxy simulations.PostprintPeer reviewe

    SDSS-IV MaNGA-resolved Star Formation and Molecular Gas Properties of Green Valley Galaxies: A First Look with ALMA and MaNGA

    Get PDF
    We study the role of cold gas in quenching star formation in the green valley by analyzing ALMA 12 CO (1-0) observations of three galaxies with resolved optical spectroscopy from the MaNGA survey. We present resolution-matched maps of the star formation rate and molecular gas mass. These data are used to calculate the star formation efficiency (SFE) and gas fraction (f gas ) for these galaxies separately in the central "bulge" regions and outer disks. We find that, for the two galaxies whose global specific star formation rate (sSFR) deviates most from the star formation main sequence, the gas fraction in the bulges is significantly lower than that in their disks, supporting an "inside-out" model of galaxy quenching. For the two galaxies where SFE can be reliably determined in the central regions, the bulges and disks share similar SFEs. This suggests that a decline in f gas is the main driver of lowered sSFR in bulges compared to disks in green valley galaxies. Within the disks, there exist common correlations between the sSFR and SFE and between sSFR and f gas on kiloparsec scales - the local SFE or f gas in the disks declines with local sSFR. Our results support a picture in which the sSFR in bulges is primarily controlled by f gas , whereas both SFE and f gas play a role in lowering the sSFR in disks. A larger sample is required to confirm if the trend established in this work is representative of the green valley as a whole.The work is supported by the Ministry of Science & Technology of Taiwan under the grant MOST 103-2112-M-001-031-MY3 and 106-2112-M-001-034. R.M. and F.B. acknowledge support by the UK Science and Technology Facilities Council (STFC). R.M. acknowledges ERC Advanced Grant 695671 "QUENCH.

    A comparative analysis of the chemical compositions of Gaia-Enceladus/Sausage and Milky Way satellites using APOGEE

    Get PDF
    We use data from the 17th data release of the Apache Point Observatory Galactic Evolution Experiment (APOGEE 2) to contrast the chemical composition of the recently discovered Gaia Enceladus/Sausage system (GE/S) to those of ten Milky Way (MW) dwarf satellite galaxies: LMC, SMC, Boötes I, Carina, Draco, Fornax, Sagittarius, Sculptor, Sextans and Ursa Minor. Our main focus is on the distributions of the stellar populations of those systems in the [Mg/Fe]-[Fe/H] and [Mg/Mn]-[Al/Fe] planes, which are commonly employed in the literature for chemical diagnosis and where dwarf galaxies can be distinguished from in situ populations. We show that, unlike MW satellites, a GE/S sample defined purely on the basis of orbital parameters falls almost entirely within the locus of ‘accreted’ stellar populations in chemical space, which is likely caused by an early quenching of star formation in GE/S. Due to a more protracted history of star formation, stars in the metal-rich end of the MW satellite populations are characterized by lower [Mg/Mn] than those of their GE/S counterparts. The chemical compositions of GE/S stars are consistent with a higher early star formation rate than MW satellites of comparable and even higher mass, suggesting that star formation in the early universe was strongly influenced by other parameters in addition to mass. We find that the direction of the metallicity gradient in the [Mg/Mn]–[Al/Fe] plane of dwarf galaxies is an indicator of the early star formation rate of the system

    Homogeneous analysis of globular clusters from the APOGEE survey with the BACCHUS code – II. The Southern clusters and overview

    Get PDF
    We investigate the Fe, C, N, O, Mg, Al, Si, K, Ca, Ce, and Nd abundances of 2283 red giant stars in 31 globular clusters from high-resolution spectra observed in both the Northern and Southern hemisphere by the SDSS-IV APOGEE-2 survey. This unprecedented homogeneous data set, largest to date, allows us to discuss the intrinsic Fe spread, the shape, and statistics of Al-Mg and N-C anti-correlations as a function of cluster mass, luminosity, age, and metallicity for all 31 clusters. We find that the Fe spread does not depend on these parameters within our uncertainties including cluster metallicity, contradicting earlier observations. We do not confirm the metallicity variations previously observed in M22 and NGC 1851. Some clusters show a bimodal Al distribution, while others exhibit a continuous distribution as has been previously reported in the literature. We confirm more than two populations in ω Cen and NGC 6752, and find new ones in M79. We discuss the scatter of Al by implementing a correction to the standard chemical evolution of Al in the Milky Way. After correction, its dependence on cluster mass is increased suggesting that the extent of Al enrichment as a function of mass was suppressed before the correction. We observe a turnover in the Mg-Al anticorrelation at very low Mg in ω Cen, similar to the pattern previously reported in M15 and M92. ω Cen may also have a weak K-Mg anticorrelation, and if confirmed, it would be only the third cluster known to show such a pattern

    SDSS-IV MaNGA: constraints on the conditions for star formation in galaxy discs

    Get PDF
    Regions of disc galaxies with widespread star formation tend to be both gravitationally unstable and self-shielded against ionizing radiation, whereas extended outer discs with little or no star formation tend to be stable and unshielded on average. We explore what drives the transition between these two regimes, specifically whether discs first meet the conditions for self-shielding (parametrized by dust optical depth, τ) or gravitational instability (parametrized by a modified version of Toomre's instability parameters, Qthermal, which quantifies the stability of a gas disc that is thermally supported at T = 104 K). We first introduce a new metric formed by the product of these quantities, Qthermalτ, which indicates whether the conditions for disc instability or self-shielding are easier to meet in a given region of a galaxy, and we discuss how Qthermalτ can be constrained even in the absence of direct gas information. We then analyse a sample of 13 galaxies with resolved gas measurements and find that on average galaxies will reach the threshold for disc instabilities (Qthermal 1). Using integral field spectroscopic observations of a sample of 236 galaxies from the Mapping Nearby Galaxies at APO (MaNGA) survey, we find that the value of Qthermalτ in star-forming discs is consistent with similar behaviour. These results support a scenario where disc fragmentation and collapse occurs before self-shielding, suggesting that gravitational instabilities are the primary condition for widespread star formation in galaxy discs. Our results support similar conclusions based on recent galaxy simulations

    The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the extended Baryon Oscillation Spectroscopic Survey and from the second phase of the Apache Point Observatory Galactic Evolution Experiment

    Get PDF
    The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in operation since July 2014. This paper describes the second data release from this phase, and the fourteenth from SDSS overall (making this, Data Release Fourteen or DR14). This release makes public data taken by SDSS-IV in its first two years of operation (July 2014-2016). Like all previous SDSS releases, DR14 is cumulative, including the most recent reductions and calibrations of all data taken by SDSS since the first phase began operations in 2000. New in DR14 is the first public release of data from the extended Baryon Oscillation Spectroscopic Survey (eBOSS); the first data from the second phase of the Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2), including stellar parameter estimates from an innovative data driven machine learning algorithm known as "The Cannon"; and almost twice as many data cubes from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous release (N = 2812 in total). This paper describes the location and format of the publicly available data from SDSS-IV surveys. We provide references to the important technical papers describing how these data have been taken (both targeting and observation details) and processed for scientific use. The SDSS website (www.sdss.org) has been updated for this release, and provides links to data downloads, as well as tutorials and examples of data use. SDSS-IV is planning to continue to collect astronomical data until 2020, and will be followed by SDSS-V.Comment: SDSS-IV collaboration alphabetical author data release paper. DR14 happened on 31st July 2017. 19 pages, 5 figures. Accepted by ApJS on 28th Nov 2017 (this is the "post-print" and "post-proofs" version; minor corrections only from v1, and most of errors found in proofs corrected
    • 

    corecore