915 research outputs found

    CalDAG-GEFI deficiency protects mice from FcγRIIa-mediated thrombotic thrombocytopenia induced by CD40L and β2GPI immune complexes

    Get PDF
    Platelet activation via the Fcγ receptor IIa (FcγRIIa) is implicated in the pathogenesis of immune complex (IC)-mediated thrombocytopenia and thrombosis (ITT). We previously showed that ICs composed of antigen and antibodies targeting CD40 ligand (CD40L) or β2 Glycoprotein I (β2GPI) induce ITT in mice transgenic for human FcγRIIa (hFcR) but not wild-type controls (which lack FcγRIIa). Here we evaluated the contribution of the guanine nucleotide exchange factor, CalDAG-GEFI, and P2Y12, key regulators of Rap1 signaling in platelets, to ITT induced by these clinically relevant ICs

    Aptitud combinatoria y heterosis en híbridos de líneas endogámicas de maíz/Combining ability and heterosis in hybrids from inbred lines corn

    Get PDF
    El trabajo se realizó en dos etapas, en la primera se formaron las cruzas en el campo experimental de la Universidad Autónoma Agraria Antonio Narro Unidad Laguna (UAAAN-UL), y en la segunda la evaluación en el campo experimental de la UAAAN-UL en los ciclos agrícola primavera y verano, y en el ejido Niágara, en el municipio de Aguascalientes, Aguascalientes, en primavera. El material genético fueron 17 líneas endogámicas, cuatro de la UAAAN-UL, dos del INIFAP y 11 del CIMMYT. El objetivo fue estimar la aptitud combinatoria general (ACG) de las líneas, la aptitud combinatoria especíca (ACE) y cuanticar los efectos genéticos y la heterosis de las cruzas. Para la ACG sobresalieron las líneas macho LAN-388P, LB-32 y LB-40, y las líneas hembras CML-319, CML-318 y CML-278; para la ACE los mayores valores lo tuvieron las cruzas LAN-123xCML-278 (3.28 t ha−1 ), LAN-123xCML-318 (1.9 t ha−1 ), LB-40xCML-319 (1.7 t ha−1 ) y LAN-388PxCML-264 (1.52 t ha−1 ). Mientras que el mayor rendimiento de grano, lo tuvieron las cruzas LB-40xCML-319 (14.49 t ha−1 ), LB-32xCML-319 (14.17 t ha−1 ), LAN-388PxCML-264 (13.68 t ha−1 ), LAN-123xCML-278 (13.55 t ha−1 ) y LAN-388PxCML-278 (13.44 t ha−1 ). La varianza de dominancia superó a la varianza aditiva en rendimiento de grano (RG) y en los principales componentes del rendimiento. Se encontraron efectos positivos de heterosis para rendimiento de grano con respecto al progenitor superior en las cruzas LB-40xCML-319 y LB-32 x CML-31

    Evaluation of the Impact of Genetically Modified Cotton After 20 Years of Cultivation in Mexico

    Get PDF
    For more than 20 years cotton has been the most widely sown genetically modified (GM) crop in Mexico. Its cultivation has fulfilled all requirements and has gone through the different regulatory stages. During the last 20 years, both research-institutions and biotech-companies have generated scientific and technical information regarding GM cotton cultivation in Mexico. In this work, we collected data in order to analyze the environmental and agronomic effects of the use of GM cotton in Mexico. In 1996, the introduction of Bt cotton made it possible to reactivate this crop, which in previous years was greatly reduced due to pest problems, production costs and environmental concerns. Bt cotton is a widely accepted tool for cotton producers and has proven to be efficient for the control of lepidopteran pests. The economic benefits of its use are variable, and depend on factors such as the international cotton-prices and other costs associated with its inputs. So far, the management strategies used to prevent development of insect resistance to GM cotton has been successful, and there are no reports of insect resistance development to Bt cotton in Mexico. In addition, no effects have been observed on non-target organisms. For herbicide tolerant cotton, the prevention of herbicide resistance has also been successful since unlike other countries, the onset of resistance weeds is still slow, apparently due to cultural practices and rotation of different herbicides. Environmental benefits have been achieved with a reduction in chemical insecticide applications and the subsequent decrease in primary pest populations, so that the inclusion of other technologies—e.g., use of non-Bt cotton- can be explored. Nevertheless, control measures need to be implemented during transport of the bolls and fiber to prevent dispersal of volunteer plants and subsequent gene flow to wild relatives distributed outside the GM cotton growing areas. It is still necessary to implement national research programs, so that biotechnology and plant breeding advances can be used in the development of cotton varieties adapted to the Mexican particular environmental conditions and to control insect pests of regional importance

    Search for the standard model Higgs boson in the H to ZZ to 2l 2nu channel in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    A search for the standard model Higgs boson in the H to ZZ to 2l 2nu decay channel, where l = e or mu, in pp collisions at a center-of-mass energy of 7 TeV is presented. The data were collected at the LHC, with the CMS detector, and correspond to an integrated luminosity of 4.6 inverse femtobarns. No significant excess is observed above the background expectation, and upper limits are set on the Higgs boson production cross section. The presence of the standard model Higgs boson with a mass in the 270-440 GeV range is excluded at 95% confidence level.Comment: Submitted to JHE

    Unveiling microbial structures during raw microalgae digestion and co-digestion with primary sludge to produce biogas using semi-continuous AnMBR systems

    Full text link
    [EN] Methane production from microalgae can be enhanced through anaerobic co-digestion with carbon-rich substrates and thus mitigate the inhibition risk associated with its low C:N ratio. Acclimated microbial communities for microalgae disruption can be used as a source of natural enzymes in bioenergy production. However, co-substrates with a certain microbial diversity such as primary sludge might shift the microbial structure. Substrates were generated in a Water Resource Recovery Facility (WRRF) and combined as follows: Scenedesmus or Chlorella digestion and microalgae co-digestion with primary sludge. The study was performed using two lab-scale Anaerobic Membrane Bioreactors (AnMBR). During three years, different feedstocks scenarios for methane production were evaluated with a special focus on the microbial diversity of the AnMBR. 57% of the population was shared between the different feedstock scenarios, revealing the importance of Anaerolineaceae members besides Smithella and Methanosaeta genera. The addition of primary sludge enhanced the microbial diversity of the system during both Chlorella and Scenedesmus co-digestion and promoted different microbial structures. Aceticlastic methanogen Methanosaeta was dominant in all the feedstock scenarios. A more remarkable role of syntrophic fatty acid degraders (Smithella, Syntrophobacteraceae) was observed during co-digestion when only microalgae were digested. However, no significant changes were observed in the microbial composition during anaerobic microalgae digestion when feeding only Chlorella or Scenedesmus. This is the first work revealing the composition of complex communities for semi-continuous bioenergy production from WRRF streams. The stability and maintenance of a microbial core over-time in semi-continuous AnMBRs is here shown supporting their future application in full-scale systems for raw microalgae digestion or codigestion.The Ministry of Economy and Competitiveness (MINECO) and the European Regional Development Fund (ERDF) are gratefully acknowledged for their support to this research work through CTM2011-28595-C02-02 and CTM2014-54980-C2-1-R projects. The authors are thankful to Ph.D. Silvia Greses and Ph.D. candidate Rebecca Serna-Garcia (Universitat de Valencia, Spain) for allowing the collection of digestate samples from their bioreactors and providing a brief data characterization of their performance. As well, authors thank the support of Maria Paches (IIAMA, Valencia, Spain) during phytoplankton monitoring in the photobioreactor plant. Finally, the sequencing service from FISABIO (Valencia, Spain) is also gratefully acknowledged for their technical support during the design stage of this work.Zamorano-López, N.; Borrás, L.; Seco, A.; Aguado García, D. (2020). Unveiling microbial structures during raw microalgae digestion and co-digestion with primary sludge to produce biogas using semi-continuous AnMBR systems. The Science of The Total Environment. 699:1-12. https://doi.org/10.1016/j.scitotenv.2019.134365S112699APHA, APHA/AWWA/WEF, 2012. In: Standard Methods for the Examination of Water and Wastewater. Stand. Methods, pp. 541 doi.org/ISBN 9780875532356.Astals, S., Musenze, R. S., Bai, X., Tannock, S., Tait, S., Pratt, S., & Jensen, P. D. (2015). Anaerobic co-digestion of pig manure and algae: Impact of intracellular algal products recovery on co-digestion performance. Bioresource Technology, 181, 97-104. doi:10.1016/j.biortech.2015.01.039Baudelet, P.-H., Ricochon, G., Linder, M., & Muniglia, L. (2017). A new insight into cell walls of Chlorophyta. Algal Research, 25, 333-371. doi:10.1016/j.algal.2017.04.008Bovio, P., Cabezas, A., & Etchebehere, C. (2018). Preliminary analysis ofChloroflexipopulations in full-scale UASB methanogenic reactors. Journal of Applied Microbiology, 126(2), 667-683. doi:10.1111/jam.14115Calusinska, M., Goux, X., Fossépré, M., Muller, E. E. L., Wilmes, P., & Delfosse, P. (2018). A year of monitoring 20 mesophilic full-scale bioreactors reveals the existence of stable but different core microbiomes in bio-waste and wastewater anaerobic digestion systems. Biotechnology for Biofuels, 11(1). doi:10.1186/s13068-018-1195-8Carrillo-Reyes, J., Barragán-Trinidad, M., & Buitrón, G. (2016). Biological pretreatments of microalgal biomass for gaseous biofuel production and the potential use of rumen microorganisms: A review. Algal Research, 18, 341-351. doi:10.1016/j.algal.2016.07.004Chen, C., Ming, J., Yoza, B. A., Liang, J., Li, Q. X., Guo, H., … Wang, Q. (2019). Characterization of aerobic granular sludge used for the treatment of petroleum wastewater. Bioresource Technology, 271, 353-359. doi:10.1016/j.biortech.2018.09.132Cheng, W., Chen, H., Yan, S., & Su, J. (2014). Illumina sequencing-based analyses of bacterial communities during short-chain fatty-acid production from food waste and sewage sludge fermentation at different pH values. World Journal of Microbiology and Biotechnology, 30(9), 2387-2395. doi:10.1007/s11274-014-1664-6Colzi Lopes, A., Valente, A., Iribarren, D., & González-Fernández, C. (2018). Energy balance and life cycle assessment of a microalgae-based wastewater treatment plant: A focus on alternative biogas uses. Bioresource Technology, 270, 138-146. doi:10.1016/j.biortech.2018.09.005Córdova, O., Chamy, R., Guerrero, L., & Sánchez-Rodríguez, A. (2018). Assessing the Effect of Pretreatments on the Structure and Functionality of Microbial Communities for the Bioconversion of Microalgae to Biogas. Frontiers in Microbiology, 9. doi:10.3389/fmicb.2018.01388Correa, D. F., Beyer, H. L., Fargione, J. E., Hill, J. D., Possingham, H. P., Thomas-Hall, S. R., & Schenk, P. M. (2019). Towards the implementation of sustainable biofuel production systems. Renewable and Sustainable Energy Reviews, 107, 250-263. doi:10.1016/j.rser.2019.03.005Crutchik, D., Frison, N., Eusebi, A. L., & Fatone, F. (2018). Biorefinery of cellulosic primary sludge towards targeted Short Chain Fatty Acids, phosphorus and methane recovery. Water Research, 136, 112-119. doi:10.1016/j.watres.2018.02.047De Vrieze, J., Christiaens, M. E. R., & Verstraete, W. (2017). The microbiome as engineering tool: Manufacturing and trading between microorganisms. New Biotechnology, 39, 206-214. doi:10.1016/j.nbt.2017.07.001De Vrieze, J., Pinto, A. J., Sloan, W. T., & Ijaz, U. Z. (2018). The active microbial community more accurately reflects the anaerobic digestion process: 16S rRNA (gene) sequencing as a predictive tool. Microbiome, 6(1). doi:10.1186/s40168-018-0449-9Dodsworth, J. A., Blainey, P. C., Murugapiran, S. K., Swingley, W. D., Ross, C. A., Tringe, S. G., … Hedlund, B. P. (2013). Single-cell and metagenomic analyses indicate a fermentative and saccharolytic lifestyle for members of the OP9 lineage. Nature Communications, 4(1). doi:10.1038/ncomms2884Dojka, M. A., Harris, J. K., & Pace, N. R. (2000). Expanding the Known Diversity and Environmental Distribution of an Uncultured Phylogenetic Division of Bacteria. Applied and Environmental Microbiology, 66(4), 1617-1621. doi:10.1128/aem.66.4.1617-1621.2000Farag, I. F., Davis, J. P., Youssef, N. H., & Elshahed, M. S. (2014). Global Patterns of Abundance, Diversity and Community Structure of the Aminicenantes (Candidate Phylum OP8). PLoS ONE, 9(3), e92139. doi:10.1371/journal.pone.0092139Fontana, A., Kougias, P. G., Treu, L., Kovalovszki, A., Valle, G., Cappa, F., … Campanaro, S. (2018). Microbial activity response to hydrogen injection in thermophilic anaerobic digesters revealed by genome-centric metatranscriptomics. Microbiome, 6(1). doi:10.1186/s40168-018-0583-4Garrido-Cardenas, J. A., Manzano-Agugliaro, F., Acien-Fernandez, F. G., & Molina-Grima, E. (2018). Microalgae research worldwide. Algal Research, 35, 50-60. doi:10.1016/j.algal.2018.08.005González-Camejo, J., Jiménez-Benítez, A., Ruano, M. V., Robles, A., Barat, R., & Ferrer, J. (2019). Optimising an outdoor membrane photobioreactor for tertiary sewage treatment. Journal of Environmental Management, 245, 76-85. doi:10.1016/j.jenvman.2019.05.010Gonzalez-Fernandez, C., Sialve, B., & Molinuevo-Salces, B. (2015). Anaerobic digestion of microalgal biomass: Challenges, opportunities and research needs. Bioresource Technology, 198, 896-906. doi:10.1016/j.biortech.2015.09.095Gonzalez-Fernandez, C., Barreiro-Vescovo, S., de Godos, I., Fernandez, M., Zouhayr, A., & Ballesteros, M. (2018). Biochemical methane potential of microalgae biomass using different microbial inocula. Biotechnology for Biofuels, 11(1). doi:10.1186/s13068-018-1188-7González-González, L. M., Correa, D. F., Ryan, S., Jensen, P. D., Pratt, S., & Schenk, P. M. (2018). Integrated biodiesel and biogas production from microalgae: Towards a sustainable closed loop through nutrient recycling. Renewable and Sustainable Energy Reviews, 82, 1137-1148. doi:10.1016/j.rser.2017.09.091Greses, S., Gaby, J. C., Aguado, D., Ferrer, J., Seco, A., & Horn, S. J. (2017). Microbial community characterization during anaerobic digestion of Scenedesmus spp. under mesophilic and thermophilic conditions. Algal Research, 27, 121-130. doi:10.1016/j.algal.2017.09.002Greses, S., Zamorano-López, N., Borrás, L., Ferrer, J., Seco, A., & Aguado, D. (2018). Effect of long residence time and high temperature over anaerobic biodegradation of Scenedesmus microalgae grown in wastewater. Journal of Environmental Management, 218, 425-434. doi:10.1016/j.jenvman.2018.04.086Herrmann, C., Kalita, N., Wall, D., Xia, A., & Murphy, J. D. (2016). Optimised biogas production from microalgae through co-digestion with carbon-rich co-substrates. Bioresource Technology, 214, 328-337. doi:10.1016/j.biortech.2016.04.119Ju, F., Lau, F., & Zhang, T. (2017). Linking Microbial Community, Environmental Variables, and Methanogenesis in Anaerobic Biogas Digesters of Chemically Enhanced Primary Treatment Sludge. Environmental Science & Technology, 51(7), 3982-3992. doi:10.1021/acs.est.6b06344Kadnikov, V. V., Mardanov, A. V., Beletsky, A. V., Karnachuk, O. V., & Ravin, N. V. (2019). Genome of the candidate phylum Aminicenantes bacterium from a deep subsurface thermal aquifer revealed its fermentative saccharolytic lifestyle. Extremophiles, 23(2), 189-200. doi:10.1007/s00792-018-01073-5Klassen, V., Blifernez-Klassen, O., Wobbe, L., Schlüter, A., Kruse, O., & Mussgnug, J. H. (2016). Efficiency and biotechnological aspects of biogas production from microalgal substrates. Journal of Biotechnology, 234, 7-26. doi:10.1016/j.jbiotec.2016.07.015Klassen, V., Blifernez-Klassen, O., Wibberg, D., Winkler, A., Kalinowski, J., Posten, C., & Kruse, O. (2017). Highly efficient methane generation from untreated microalgae biomass. Biotechnology for Biofuels, 10(1). doi:10.1186/s13068-017-0871-4Leng, L., Yang, P., Singh, S., Zhuang, H., Xu, L., Chen, W.-H., … Lee, P.-H. (2018). A review on the bioenergetics of anaerobic microbial metabolism close to the thermodynamic limits and its implications for digestion applications. Bioresource Technology, 247, 1095-1106. doi:10.1016/j.biortech.2017.09.103Li, R., Duan, N., Zhang, Y., Liu, Z., Li, B., Zhang, D., & Dong, T. (2017). Anaerobic co-digestion of chicken manure and microalgae Chlorella sp.: Methane potential, microbial diversity and synergistic impact evaluation. Waste Management, 68, 120-127. doi:10.1016/j.wasman.2017.06.028Li, R., Duan, N., Zhang, Y., Liu, Z., Li, B., Zhang, D., … Dong, T. (2017). Co-digestion of chicken manure and microalgae Chlorella 1067 grown in the recycled digestate: Nutrients reuse and biogas enhancement. Waste Management, 70, 247-254. doi:10.1016/j.wasman.2017.09.016Mahdy, A., Mendez, L., Ballesteros, M., & González-Fernández, C. (2015). Algaculture integration in conventional wastewater treatment plants: Anaerobic digestion comparison of primary and secondary sludge with microalgae biomass. Bioresource Technology, 184, 236-244. doi:10.1016/j.biortech.2014.09.145Mansfeldt, C., Achermann, S., Men, Y., Walser, J.-C., Villez, K., Joss, A., … Fenner, K. (2019). Microbial residence time is a controlling parameter of the taxonomic composition and functional profile of microbial communities. The ISME Journal, 13(6), 1589-1601. doi:10.1038/s41396-019-0371-6McIlroy, S. J., Kirkegaard, R. H., Dueholm, M. S., Fernando, E., Karst, S. M., Albertsen, M., & Nielsen, P. H. (2017). Culture-Independent Analyses Reveal Novel Anaerolineaceae as Abundant Primary Fermenters in Anaerobic Digesters Treating Waste Activated Sludge. Frontiers in Microbiology, 8. doi:10.3389/fmicb.2017.01134Nakamura, K., Iizuka, R., Nishi, S., Yoshida, T., Hatada, Y., Takaki, Y., … Funatsu, T. (2016). Culture-independent method for identification of microbial enzyme-encoding genes by activity-based single-cell sequencing using a water-in-oil microdroplet platform. Scientific Reports, 6(1). doi:10.1038/srep22259Pachés, M., Romero, I., Hermosilla, Z., & Martinez-Guijarro, R. (2012). PHYMED: An ecological classification system for the Water Framework Directive based on phytoplankton community composition. Ecological Indicators, 19, 15-23. doi:10.1016/j.ecolind.2011.07.003Peces, M., Astals, S., Jensen, P. D., & Clarke, W. P. (2018). Deterministic mechanisms define the long-term anaerobic digestion microbiome and its functionality regardless of the initial microbial community. Water Research, 141, 366-376. doi:10.1016/j.watres.2018.05.028Qiao, J.-T., Qiu, Y.-L., Yuan, X.-Z., Shi, X.-S., Xu, X.-H., & Guo, R.-B. (2013). Molecular characterization of bacterial and archaeal communities in a full-scale anaerobic reactor treating corn straw. Bioresource Technology, 143, 512-518. doi:10.1016/j.biortech.2013.06.014Rinke, C. (2018). Single-Cell Genomics of Microbial Dark Matter. Microbiome Analysis, 99-111. doi:10.1007/978-1-4939-8728-3_7Rivière, D., Desvignes, V., Pelletier, E., Chaussonnerie, S., Guermazi, S., Weissenbach, J., … Sghir, A. (2009). Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge. The ISME Journal, 3(6), 700-714. doi:10.1038/ismej.2009.2Robles, Á., Ruano, M. V., Charfi, A., Lesage, G., Heran, M., Harmand, J., … Ferrer, J. (2018). A review on anaerobic membrane bioreactors (AnMBRs) focused on modelling and control aspects. Bioresource Technology, 270, 612-626. doi:10.1016/j.biortech.2018.09.049Sanz, J. L., Rojas, P., Morato, A., Mendez, L., Ballesteros, M., & González-Fernández, C. (2017). Microbial communities of biomethanization digesters fed with raw and heat pre-treated microalgae biomasses. Chemosphere, 168, 1013-1021. doi:10.1016/j.chemosphere.2016.10.109Seco, A., Aparicio, S., González-Camejo, J., Jiménez-Benítez, A., Mateo, O., Mora, J. F., … Ferrer, J. (2018). Resource recovery from sulphate-rich sewage through an innovative anaerobic-based water resource recovery facility (WRRF). Water Science and Technology, 78(9), 1925-1936. doi:10.2166/wst.2018.492Sialve, B., Bernet, N., & Bernard, O. (2009). Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnology Advances, 27(4), 409-416. doi:10.1016/j.biotechadv.2009.03.001Skouteris, G., Hermosilla, D., López, P., Negro, C., & Blanco, Á. (2012). Anaerobic membrane bioreactors for wastewater treatment: A review. Chemical Engineering Journal, 198-199, 138-148. doi:10.1016/j.cej.2012.05.070Solden, L., Lloyd, K., & Wrighton, K. (2016). The bright side of microbial dark matter: lessons learned from the uncultivated majority. Current Opinion in Microbiology, 31, 217-226. doi:10.1016/j.mib.2016.04.020Solé-Bundó, M., Salvadó, H., Passos, F., Garfí, M., & Ferrer, I. (2018). Strategies to Optimize Microalgae Conversion to Biogas: Co-Digestion, Pretreatment and Hydraulic Retention Time. Molecules, 23(9), 2096. doi:10.3390/molecules23092096Solé-Bundó, M., Garfí, M., Matamoros, V., & Ferrer, I. (2019). Co-digestion of microalgae and primary sludge: Effect on biogas production and microcontaminants removal. Science of The Total Environment, 660, 974-981. doi:10.1016/j.scitotenv.2019.01.011Stämmler, F., Gläsner, J., Hiergeist, A., Holler, E., Weber, D., Oefner, P. J., … Spang, R. (2016). Adjusting microbiome profiles for differences in microbial load by spike-in bacteria. Microbiome, 4(1). doi:10.1186/s40168-016-0175-0Vanwonterghem, I., Jensen, P. D., Dennis, P. G., Hugenholtz, P., Rabaey, K., & Tyson, G. W. (2014). Deterministic processes guide long-term synchronised population dynamics in replicate anaerobic digesters. The ISME Journal, 8(10), 2015-2028. doi:10.1038/ismej.2014.50Wang, Y., Hammes, F., De Roy, K., Verstraete, W., & Boon, N. (2010). Past, present and future applications of flow cytometry in aquatic microbiology. Trends in Biotechnology, 28(8), 416-424. doi:10.1016/j.tibtech.2010.04.006Weinrich, S., Koch, S., Bonk, F., Popp, D., Benndorf, D., Klamt, S., & Centler, F. (2019). Augmenting Biogas Process Modeling by Resolving Intracellular Metabolic Activity. Frontiers in Microbiology, 10. doi:10.3389/fmicb.2019.01095Widder, S., Allen, R. J., Pfeiffer, T., Curtis, T. P., Wiuf, C., … Soyer, O. S. (2016). Challenges in microbial ecology: building predictive understanding of community function and dynamics. The ISME Journal, 10(11), 2557-2568. doi:10.1038/ismej.2016.45Xie, B., Gong, W., Tian, Y., Qu, F., Luo, Y., Du, X., … Liang, H. (2018). Biodiesel production with the simultaneous removal of nitrogen, phosphorus and COD in microalgal-bacterial communities for the treatment of anaerobic digestion effluent in photobioreactors. Chemical Engineering Journal, 350, 1092-1102. doi:10.1016/j.cej.2018.06.032Zamalloa, C., De Vrieze, J., Boon, N., & Verstraete, W. (2011). Anaerobic digestibility of marine microalgae Phaeodactylum tricornutum in a lab-scale anaerobic membrane bioreactor. Applied Microbiology and Biotechnology, 93(2), 859-869. doi:10.1007/s00253-011-3624-5Zamorano-López, N., Borrás, L., Giménez, J. B., Seco, A., & Aguado, D. (2019). Acclimatised rumen culture for raw microalgae conversion into biogas: Linking microbial community structure and operational parameters in anaerobic membrane bioreactors (AnMBR). Bioresource Technology, 290, 121787. doi:10.1016/j.biortech.2019.121787Zamorano-López, N., Greses, S., Aguado, D., Seco, A., & Borrás, L. (2019). Thermophilic anaerobic conversion of raw microalgae: Microbial community diversity in high solids retention systems. Algal Research, 41, 101533. doi:10.1016/j.algal.2019.101533Zou, Y., Xu, X., Li, L., Yang, F., & Zhang, S. (2018). Enhancing methane production from U. lactuca using combined anaerobically digested sludge (ADS) and rumen fluid pre-treatment and the effect on the solubilization of microbial community structures. Bioresource Technology, 254, 83-90. doi:10.1016/j.biortech.2017.12.054Lv, Z., Chen, Z., Chen, X., Liang, J., Jiang, J., & Loake, G. J. (2019). Effects of various feedstocks on isotope fractionation of biogas and microbial community structure during anaerobic digestion. Waste Management, 84, 211-219. doi:10.1016/j.wasman.2018.11.04

    Search for New Physics with Jets and Missing Transverse Momentum in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    A search for new physics is presented based on an event signature of at least three jets accompanied by large missing transverse momentum, using a data sample corresponding to an integrated luminosity of 36 inverse picobarns collected in proton--proton collisions at sqrt(s)=7 TeV with the CMS detector at the LHC. No excess of events is observed above the expected standard model backgrounds, which are all estimated from the data. Exclusion limits are presented for the constrained minimal supersymmetric extension of the standard model. Cross section limits are also presented using simplified models with new particles decaying to an undetected particle and one or two jets

    Search for anomalous t t-bar production in the highly-boosted all-hadronic final state

    Get PDF
    A search is presented for a massive particle, generically referred to as a Z', decaying into a t t-bar pair. The search focuses on Z' resonances that are sufficiently massive to produce highly Lorentz-boosted top quarks, which yield collimated decay products that are partially or fully merged into single jets. The analysis uses new methods to analyze jet substructure, providing suppression of the non-top multijet backgrounds. The analysis is based on a data sample of proton-proton collisions at a center-of-mass energy of 7 TeV, corresponding to an integrated luminosity of 5 inverse femtobarns. Upper limits in the range of 1 pb are set on the product of the production cross section and branching fraction for a topcolor Z' modeled for several widths, as well as for a Randall--Sundrum Kaluza--Klein gluon. In addition, the results constrain any enhancement in t t-bar production beyond expectations of the standard model for t t-bar invariant masses larger than 1 TeV.Comment: Submitted to the Journal of High Energy Physics; this version includes a minor typo correction that will be submitted as an erratu

    Combined search for the quarks of a sequential fourth generation

    Get PDF
    Results are presented from a search for a fourth generation of quarks produced singly or in pairs in a data set corresponding to an integrated luminosity of 5 inverse femtobarns recorded by the CMS experiment at the LHC in 2011. A novel strategy has been developed for a combined search for quarks of the up and down type in decay channels with at least one isolated muon or electron. Limits on the mass of the fourth-generation quarks and the relevant Cabibbo-Kobayashi-Maskawa matrix elements are derived in the context of a simple extension of the standard model with a sequential fourth generation of fermions. The existence of mass-degenerate fourth-generation quarks with masses below 685 GeV is excluded at 95% confidence level for minimal off-diagonal mixing between the third- and the fourth-generation quarks. With a mass difference of 25 GeV between the quark masses, the obtained limit on the masses of the fourth-generation quarks shifts by about +/- 20 GeV. These results significantly reduce the allowed parameter space for a fourth generation of fermions.Comment: Replaced with published version. Added journal reference and DO

    Measurement of the t t-bar production cross section in the dilepton channel in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    The t t-bar production cross section (sigma[t t-bar]) is measured in proton-proton collisions at sqrt(s) = 7 TeV in data collected by the CMS experiment, corresponding to an integrated luminosity of 2.3 inverse femtobarns. The measurement is performed in events with two leptons (electrons or muons) in the final state, at least two jets identified as jets originating from b quarks, and the presence of an imbalance in transverse momentum. The measured value of sigma[t t-bar] for a top-quark mass of 172.5 GeV is 161.9 +/- 2.5 (stat.) +5.1/-5.0 (syst.) +/- 3.6(lumi.) pb, consistent with the prediction of the standard model.Comment: Replaced with published version. Included journal reference and DO

    Compressed representation of a partially defined integer function over multiple arguments

    Get PDF
    In OLAP (OnLine Analitical Processing) data are analysed in an n-dimensional cube. The cube may be represented as a partially defined function over n arguments. Considering that often the function is not defined everywhere, we ask: is there a known way of representing the function or the points in which it is defined, in a more compact manner than the trivial one
    corecore