113 research outputs found
Emergence of novel fungal pathogens by ecological speciation: importance of the reduced viability of immigrants
Expanding global trade and the domestication of ecosystems have greatly accelerated the rate of emerging infectious fungal diseases, and host-shift speciation appears to be a major route for disease emergence. There is therefore an increased interest in identifying the factors that drive the evolution of reproductive isolation between populations adapting to different hosts. Here, we used genetic markers and cross-inoculations to assess the level of gene flow and investigate barriers responsible for reproductive isolation between two sympatric populations of Venturia inaequalis, the fungal pathogen causing apple scab disease, one of the fungal populations causing a recent emerging disease on resistant varieties. Our results showed the maintenance over several years of strong and stable differentiation between the two populations in the same orchards, suggesting ongoing ecological divergence following a host shift. We identified strong selection against immigrants (i.e. host specificity) from different host varieties as the strongest and likely most efficient barrier to gene flow between local and emerging populations. Cross-variety disease transmission events were indeed rare in the field and cross-inoculation tests confirmed high host specificity. Because the fungus mates within its host after successful infection and because pathogenicity-related loci prevent infection of nonhost trees, adaptation to specific hosts may alone maintain both genetic differentiation between and adaptive allelic combinations within sympatric populations parasitizing different apple varieties, thus acting as a ‘magic trait’. Additional intrinsic and extrinsic postzygotic barriers might complete reproductive isolation and explain why the rare migrants and F1 hybrids detected do not lead to pervasive gene flow across years
Magic traits drive the emergence of pathogens
An important branch of evolutionary biology strives to understand how divergent selection for an ecologically important trait can foster the emergence of new species specialized on different niches. Such ecological speciation is usually difficult to achieve because recombination between different subsets of a population that are adapting to different environments counteracts selection for locally adapted gene combinations. Traits pleiotropically controlling adaptation to different environments and reproductive isolation are therefore the most favourable for ecological speciation, and are thus called “magic traits”. We used genetic markers and cross-inoculations to show that pathogenicity-related loci are responsible for both host adaptation and reproductive isolation in emerging populations of Venturia
inaequalis, the fungus causing apple scab disease. Because the fungus mates within its host and because the pathogenicity-related loci prevent infection of the non-host trees, host adaptation pleiotropically maintains genetic differentiation and adaptive allelic combinations between sympatric populations specific to different apple varieties. Such “magic traits” are likely frequent in fungal pathogens, and likely drive the emergence of new diseases.
Genetic signatures of variation in population size in a native fungal pathogen after the recent intensive plantation of its host tree
Historical fluctuations in forests’ distribution driven by past climate changes and anthropogenic activities can have large impacts on the demographic history of pathogens that have a long co-evolution history with these host trees. Using a population genetic approach, we investigated that hypothesis by reconstructing the demographic history of Armillaria ostoyae, one of the major pathogens of the maritime pine (Pinus pinaster), in the largest monospecific pine planted forest in Europe (south-western France). Genetic structure analyses and approximate Bayesian computation approaches revealed that a single pathogen population underwent a severe reduction in effective size (12 times lower) 1080–2080 generations ago, followed by an expansion (4 times higher) during the last 4 generations. These results are consistent with the history of the maritime pine forest in the region characterized by a strong recession during the last glaciation (~19 000 years ago) and massive plantations during the second half of the nineteenth century. Results suggest that recent and intensive plantations of a host tree population have offered the opportunity for a rapid spread and adaptation of their pathogens
On the Origin and Spread of the Scab Disease of Apple: Out of Central Asia
Background Venturia inaequalis is an ascomycete fungus responsible for apple scab, a disease that has invaded almost all apple growing regions worldwide, with the corresponding adverse effects on apple production. Monitoring and predicting the effectiveness of intervention strategies require knowledge of the origin, introduction pathways, and population biology of pathogen populations. Analysis of the variation of genetic markers using the inferential framework of population genetics offers the potential to retrieve this information. Methodology/Principal Findings Here, we present a population genetic analysis of microsatellite variation in 1,273 strains of V. inaequalis representing 28 orchard samples from seven regions in five continents. Analysis of molecular variance revealed that most of the variation (88%) was distributed within localities, which is consistent with extensive historical migrations of the fungus among and within regions. Despite this shallow population structure, clustering analyses partitioned the data set into separate groups corresponding roughly to geography, indicating that each region hosts a distinct population of the fungus. Comparison of the levels of variability among populations, along with coalescent analyses of migration models and estimates of genetic distances, was consistent with a scenario in which the fungus emerged in Central Asia, where apple was domesticated, before its introduction into Europe and, more recently, into other continents with the expansion of apple growing. Across the novel range, levels of variability pointed to multiple introductions and all populations displayed signatures of significant post-introduction increases in population size. Most populations exhibited high genotypic diversity and random association of alleles across loci, indicating recombination both in native and introduced areas. Conclusions/Significance Venturia inaequalis is a model of invasive phytopathogenic fungus that has now reached the ultimate stage of the invasion process with a broad geographic distribution and well-established populations displaying high genetic variability, regular sexual reproduction, and demographic expansion.Contexte Venturia inaequalis est un champignon ascomycete responsable de la tavelure du pommier, une maladie qui a envahi presque toutes les régions du monde où le pommier est cultivé posant ainsi de graves problèmes en production. Prévenir et enrayer efficacement la réussite d’un tel succès invasif nécessite des connaissances approfondies sur l’origine, les voies d’introduction, la biologie et la génétique de ces populations invasives. En utilisant le potentiel d’inférence de la génétique des populations, l’analyse de la variation de marqueurs génétiques offre la possibilité d’accéder à ces informations. Méthodologie et Principaux résultats Ici nous présentons l’analyse de données microsatellites obtenues pour 1273 souches de V. inaequalis provenant de 28 vergers prélevées dans 7 régions sur les 5 continents. L’analyse de la variance moléculaire révèle que 88% de la variation se retrouve dans les vergers échantillonnés, ce qui est compatible avec d’importantes migrations historiques du champignon entre et à l’intérieur même des régions. Malgré cette très faible structuration des populations, les différentes analyses de clustering mettent en évidence un partage des populations en groupes séparés correspondant à leur origine géographique, montrant ainsi que chaque région héberge une population distincte du champignon. Ensemble, les résultats obtenus sur la comparaison du niveau de variabilité entre populations, les analyses de coalescence et les modèles de migration testés plaident en faveur d’un scénario dans lequel le champignon aurait émergé d’Asie Centrale, où le pommier a été domestiqué, avant d’être introduit en Europe puis plus récemment dans les autres continents suite à l’expansion de la culture du pommier. Les niveaux de variabilité indiquent que ces territoires ont subi des introductions multiples et que les populations portent toutes des signatures révélant de fortes expansions démographiques après leur introduction. Enfin, la forte diversité génotypique des populations et l’association aléatoire des allèles entre loci suggèrent que le champignon présente une reproduction sexuée régulière à la fois dans les régions où il a été introduit et dans sa région native. Conclusion et Portée. Venturia inaequalis est un modèle de champignons phytopathogène invasif qui a maintenant atteint le stade ultime du processus invasif, c’est à dire une très large distribution géographique par des populations bien établies montrant une grande diversité génétique, une reproduction sexuée régulière et une histoire d’expansion démographique
Glacial Refugia in Pathogens: European Genetic Structure of Anther Smut Pathogens on Silene latifolia and Silene dioica
Climate warming is predicted to increase the frequency of invasions by pathogens and to cause the large-scale redistribution of native host species, with dramatic consequences on the health of domesticated and wild populations of plants and animals. The study of historic range shifts in response to climate change, such as during interglacial cycles, can help in the prediction of the routes and dynamics of infectious diseases during the impending ecosystem changes. Here we studied the population structure in Europe of two Microbotryum species causing anther smut disease on the plants Silene latifolia and Silene dioica. Clustering analyses revealed the existence of genetically distinct groups for the pathogen on S. latifolia, providing a clear-cut example of European phylogeography reflecting recolonization from southern refugia after glaciation. The pathogen genetic structure was congruent with the genetic structure of its host species S. latifolia, suggesting dependence of the migration pathway of the anther smut fungus on its host. The fungus, however, appeared to have persisted in more numerous and smaller refugia than its host and to have experienced fewer events of large-scale dispersal. The anther smut pathogen on S. dioica also showed a strong phylogeographic structure that might be related to more northern glacial refugia. Differences in host ecology probably played a role in these differences in the pathogen population structure. Very high selfing rates were inferred in both fungal species, explaining the low levels of admixture between the genetic clusters. The systems studied here indicate that migration patterns caused by climate change can be expected to include pathogen invasions that follow the redistribution of their host species at continental scales, but also that the recolonization by pathogens is not simply a mirror of their hosts, even for obligate biotrophs, and that the ecology of hosts and pathogen mating systems likely affects recolonization patterns
Nuclear and Chloroplast Microsatellites Show Multiple Introductions in the Worldwide Invasion History of Common Ragweed, Ambrosia artemisiifolia
BACKGROUND: Ambrosia artemisiifolia is a North American native that has become one of the most problematic invasive plants in Europe and Asia. We studied its worldwide population genetic structure, using both nuclear and chloroplast microsatellite markers and an unprecedented large population sampling. Our goals were (i) to identify the sources of the invasive populations; (ii) to assess whether all invasive populations were founded by multiple introductions, as previously found in France; (iii) to examine how the introductions have affected the amount and structure of genetic variation in Europe; (iv) to document how the colonization of Europe proceeded; (v) to check whether populations exhibit significant heterozygote deficiencies, as previously observed. PRINCIPAL FINDINGS: We found evidence for multiple introductions of A. artemisiifolia, within regions but also within populations in most parts of its invasive range, leading to high levels of diversity. In Europe, introductions probably stem from two different regions of the native area: populations established in Central Europe appear to have originated from eastern North America, and Eastern European populations from more western North America. This may result from differential commercial exchanges between these geographic regions. Our results indicate that the expansion in Europe mostly occurred through long-distance dispersal, explaining the absence of isolation by distance and the weak influence of geography on the genetic structure in this area in contrast to the native range. Last, we detected significant heterozygote deficiencies in most populations. This may be explained by partial selfing, biparental inbreeding and/or a Wahlund effect and further investigation is warranted. CONCLUSIONS: This insight into the sources and pathways of common ragweed expansion may help to better understand its invasion success and provides baseline data for future studies on the evolutionary processes involved during range expansion in novel environments
Habitat and Host Indicate Lineage Identity in Colletotrichum gloeosporioides s.l. from Wild and Agricultural Landscapes in North America
Understanding the factors that drive the evolution of pathogenic fungi is central to revealing the mechanisms of virulence and host preference, as well as developing effective disease control measures. Prerequisite to these pursuits is the accurate delimitation of species boundaries. Colletotrichum gloeosporioides s.l. is a species complex of plant pathogens and endophytic fungi for which reliable species recognition has only recently become possible through a multi-locus phylogenetic approach. By adopting an intensive regional sampling strategy encompassing multiple hosts within and beyond agricultural zones associated with cranberry (Vaccinium macrocarpon Aiton), we have integrated North America strains of Colletotrichum gloeosporioides s.l. from these habitats into a broader phylogenetic framework. We delimit species on the basis of genealogical concordance phylogenetic species recognition (GCPSR) and quantitatively assess the monophyly of delimited species at each of four nuclear loci and in the combined data set with the genealogical sorting index (gsi). Our analysis resolved two principal lineages within the species complex. Strains isolated from cranberry and sympatric host plants are distributed across both of these lineages and belong to seven distinct species or terminal clades. Strains isolated from V. macrocarpon in commercial cranberry beds belong to four species, three of which are described here as new. Another species, C. rhexiae Ellis & Everh., is epitypified. Intensive regional sampling has revealed a combination of factors, including the host species from which a strain has been isolated, the host organ of origin, and the habitat of the host species, as useful indicators of species identity in the sampled regions. We have identified three broadly distributed temperate species, C. fructivorum, C. rhexiae, and C. nupharicola, that could be useful for understanding the microevolutionary forces that may lead to species divergence in this important complex of endophytes and plant pathogens
New Insight into the History of Domesticated Apple: Secondary Contribution of the European Wild Apple to the Genome of Cultivated Varieties
The apple is the most common and culturally important fruit crop of temperate areas. The elucidation of its origin and domestication history is therefore of great interest. The wild Central Asian species Malus sieversii has previously been identified as the main contributor to the genome of the cultivated apple (Malus domestica), on the basis of morphological, molecular, and historical evidence. The possible contribution of other wild species present along the Silk Route running from Asia to Western Europe remains a matter of debate, particularly with respect to the contribution of the European wild apple. We used microsatellite markers and an unprecedented large sampling of five Malus species throughout Eurasia (839 accessions from China to Spain) to show that multiple species have contributed to the genetic makeup of domesticated apples. The wild European crabapple M. sylvestris, in particular, was a major secondary contributor. Bidirectional gene flow between the domesticated apple and the European crabapple resulted in the current M. domestica being genetically more closely related to this species than to its Central Asian progenitor, M. sieversii. We found no evidence of a domestication bottleneck or clonal population structure in apples, despite the use of vegetative propagation by grafting. We show that the evolution of domesticated apples occurred over a long time period and involved more than one wild species. Our results support the view that self-incompatibility, a long lifespan, and cultural practices such as selection from open-pollinated seeds have facilitated introgression from wild relatives and the maintenance of genetic variation during domestication. This combination of processes may account for the diversification of several long-lived perennial crops, yielding domestication patterns different from those observed for annual species
Distribution of the anther-smut pathogen Microbotryum on species of the Caryophyllaceae
Artículo de publicación ISIUnderstanding disease distributions is of fundamental and applied importance,
yet few studies benefit from integrating broad sampling with ecological and phylogenetic
data. Here, anther-smut disease, caused by the fungus Microbotryum,
was assessed using herbarium specimens of Silene and allied genera of the
Caryophyllaceae.
• A total of 42 000 herbarium specimens were examined, and plant geographical
distributions and morphological and life history characteristics were tested as correlates
of disease occurrence. Phylogenetic comparative methods were used to
determine the association between disease and plant life-span.
• Disease was found on 391 herbarium specimens from 114 species and all continents
with native Silene. Anther smut occurred exclusively on perennial plants,
consistent with the pathogen requiring living hosts to overwinter. The disease was
estimated to occur in 80% of perennial species of Silene and allied genera. The
correlation between plant life-span and disease was highly significant while
controlling for the plant phylogeny, but the disease was not correlated with
differences in floral morphology.
• Using resources available in natural history collections, this study illustrates how
disease distribution can be determined, not by restriction to a clade of susceptible
hosts or to a limited geographical region, but by association with host life-span, a
trait that has undergone frequent evolutionary transitions.We acknowledge grant support from the John
Simon Guggenheim Memorial Foundation and the
National Science Foundation (DEB-0747222) to MEH,
the National Science Foundation Minority Postdoctoral
Fellowship (DBI-0706721) to JIMA, University of Chile
awards PFB-23 and ICM P05-002 to MTKA, and The
Swedish Research Council for Environment, Agricultural
Sciences and Spatial Planning (FORMAS) support to BO,
and Royal Society Incoming Fellowship and Center for
Infection, Immunity, and Evolution Advanced Fellowship
to ABP
- …