24 research outputs found

    The utility of the new generation of humanized mice to study HIV-1 infection: transmission, prevention, pathogenesis, and treatment

    Get PDF
    Substantial improvements have been made in recent years in the ability to engraft human cells and tissues into immunodeficient mice. The use of human hematopoietic stem cells (HSCs) leads to multi-lineage human hematopoiesis accompanied by production of a variety of human immune cell types. Population of murine primary and secondary lymphoid organs with human cells occurs, and long-term engraftment has been achieved. Engrafted cells are capable of producing human innate and adaptive immune responses, making these models the most physiologically relevant humanized animal models to date. New models have been successfully infected by a variety of strains of Human Immunodeficiency Virus Type 1 (HIV-1), accompanied by virus replication in lymphoid and non-lymphoid organs, including the gut-associated lymphoid tissue, the male and female reproductive tracts, and the brain. Multiple forms of virus-induced pathogenesis are present, and human T cell and antibody responses to HIV-1 are detected. These humanized mice are susceptible to a high rate of rectal and vaginal transmission of HIV-1 across an intact epithelium, indicating the potential to study vaccines and microbicides. Antiviral drugs, siRNAs, and hematopoietic stem cell gene therapy strategies have all been shown to be effective at reducing viral load and preventing or reversing helper T cell loss in humanized mice, indicating that they will serve as an important preclinical model to study new therapeutic modalities. HIV-1 has also been shown to evolve in response to selective pressures in humanized mice, thus showing that the model will be useful to study and/or predict viral evolution in response to drug or immune pressures. The purpose of this review is to summarize the findings reported to date on all new humanized mouse models (those transplanted with human HSCs) in regards to HIV-1 sexual transmission, pathogenesis, anti-HIV-1 immune responses, viral evolution, pre- and post-exposure prophylaxis, and gene therapeutic strategies

    Reconstruction and identification of τ lepton decays to hadrons and ντ at CMS

    Get PDF
    This paper describes the algorithms used by the CMS experiment to reconstruct and identify tau -> hadrons + nu(tau) decays during Run 1 of the LHC. The performance of the algorithms is studied in proton-proton collisions recorded at a centre-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 19.7 fb(-1). The algorithms achieve an identification efficiency of 50-60%, with misidentification rates for quark and gluon jets, electrons, and muons between per mille and per cent levels

    Reconstruction and identification of tau lepton decays to hadrons and tau neutrino at CMS

    Get PDF
    This paper describes the algorithms used by the CMS experiment to reconstruct and identify tau to hadrons + tau neutrino decays during Run 1 of the LHC. The performance of the algorithms is studied in proton-proton collisions recorded at a centre-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 19.7 inverse femtobarns. The algorithms achieve an identification efficiency of 50-60%, with misidentification rates for quark and gluon jets, electrons, and muons between per mille and per cent levels.Comment: Replaced with published version. Added journal referenc

    Europeana Impact Playbook

    No full text
    Impact assessment is a fast-growing field that generates a lot of interest. But it can come across as a daunting and complex topic. This playbook was developed to take you by the hand, introduce you to the language, and help you make some strategic choices
    corecore