101 research outputs found

    Specificity factors in cytoplasmic polyadenylation

    Get PDF
    Poly(A) tail elongation after export of an messenger RNA (mRNA) to the cytoplasm is called cytoplasmic polyadenylation. It was first discovered in oocytes and embryos, where it has roles in meiosis and development. In recent years, however, has been implicated in many other processes, including synaptic plasticity and mitosis. This review aims to introduce cytoplasmic polyadenylation with an emphasis on the factors and elements mediating this process for different mRNAs and in different animal species. We will discuss the RNA sequence elements mediating cytoplasmic polyadenylation in the 3â€Č untranslated regions of mRNAs, including the CPE, MBE, TCS, eCPE, and C-CPE. In addition to describing the role of general polyadenylation factors, we discuss the specific RNA binding protein families associated with cytoplasmic polyadenylation elements, including CPEB (CPEB1, CPEB2, CPEB3, and CPEB4), Pumilio (PUM2), Musashi (MSI1, MSI2), zygote arrest (ZAR2), ELAV like proteins (ELAVL1, HuR), poly(C) binding proteins (PCBP2, αCP2, hnRNP-E2), and Bicaudal C (BICC1). Some emerging themes in cytoplasmic polyadenylation will be highlighted. To facilitate understanding for those working in different organisms and fields, particularly those who are analyzing high throughput data, HUGO gene nomenclature for the human orthologs is used throughout. Where human orthologs have not been clearly identified, reference is made to protein families identified in man

    Isoform Diversity and Regulation in Peripheral and Central Neurons Revealed through RNA-Seq

    Get PDF
    To fully understand cell type identity and function in the nervous system there is a need to understand neuronal gene expression at the level of isoform diversity. Here we applied Next Generation Sequencing of the transcriptome (RNA-Seq) to purified sensory neurons and cerebellar granular neurons (CGNs) grown on an axonal growth permissive substrate. The goal of the analysis was to uncover neuronal type specific isoforms as a prelude to understanding patterns of gene expression underlying their intrinsic growth abilities. Global gene expression patterns were comparable to those found for other cell types, in that a vast majority of genes were expressed at low abundance. Nearly 18% of gene loci produced more than one transcript. More than 8000 isoforms were differentially expressed, either to different degrees in different neuronal types or uniquely expressed in one or the other. Sensory neurons expressed a larger number of genes and gene isoforms than did CGNs. To begin to understand the mechanisms responsible for the differential gene/isoform expression we identified transcription factor binding sites present specifically in the upstream genomic sequences of differentially expressed isoforms, and analyzed the 3â€Č untranslated regions (3â€Č UTRs) for microRNA (miRNA) target sites. Our analysis defines isoform diversity for two neuronal types with diverse axon growth capabilities and begins to elucidate the complex transcriptional landscape in two neuronal populations

    ICAR: endoscopic skull‐base surgery

    Get PDF
    n/

    Household transmission but without the community-acquired outbreak of COVID-19 in Taiwan

    No full text
    Background: Household transmission is responsible for the subsequent outbreak of community-acquired COVID-19. The aim of this study was to elucidate the household transmission mode and to further estimate effective and basic reproductive number with and without non-pharmaceutical interventions (NPIs). Methods: A total of 26 households with 39 family clusters between January, 2020 and February, 2021 in Taiwan were enrolled for analysis. The Becker's chain binomial model was used to analyze the probabilities of being infected and escaping from SARS-COV-2 before and after January 1st, 2021, which were further converted to estimating basic reproductive numbers in the absence of NPIs. The likelihood of leading to the subsequent community-acquired outbreak given NPIs was further assessed. Results: The secondary attack rate was 46.2%. Given the saturated Greenwood model selected as the best fitted model, the probability of being infected and escaping from COVID-19 within household was estimated as 44.4% (95% CI: 5.0%–53.7%) and 55.7% (95% CI: 46.3%–65.0%), respectively. In the second period of early 2021, the infected probability was increased to 58.3% (95% CI: 12.7%–90.0%) and the escape probability was lowered to 41.7% (95% CI: 0.0%–86.9%). The corresponding basic reproductive numbers (R0) increased from 4.29 in the first period to 6.73 in the second period without NPIs. However, none of subsequent community-acquired outbreak was noted in Taiwan given very effective NPIs in both periods. Conclusion: The proposed method and results are useful for designing household-specific containment measures and NPIs to stamp out a large-scale community-acquired outbreak as demonstrated in Taiwan
    • 

    corecore