14 research outputs found

    Piliation of Invasive Streptococcus pneumoniae Isolates in the Era before Pneumococcal Conjugate Vaccine Introduction in Malawi

    Get PDF
    The pneumococcal pilus has been shown to be an important determinant of adhesion and virulence in mouse models of colonization, pneumonia, and bacteremia. A pilus is capable of inducing protective immunity, supporting its inclusion in next-generation pneumococcal protein vaccine formulations. Whether this vaccine target is common among pneumococci in sub-Saharan Africa is uncertain. To define the prevalence and genetic diversity of type I and II pili among invasive pneumococci in Malawi prior to the introduction of the 13-valent pneumococcal conjugate vaccine (PCV13) into routine childhood immunization, we examined 188 Streptococcus pneumoniae isolates collected between 2002 and 2008 (17% serotype 1). In this region of high disease burden, we found a low frequency of invasive piliated pneumococci (14%) and pilus gene sequence diversity similar to that seen previously in multiple global pneumococcal lineages. All common serotypes with pilus were covered by PCV13 and so we predict that pilus prevalence will be reduced in the Malawian pneumococcal population after PCV13 introduction

    Population genetic structure of Streptococcus pneumoniae in Kilifi, Kenya, prior to the introduction of pneumococcal conjugate vaccine.

    Get PDF
    BACKGROUND: The 10-valent pneumococcal conjugate vaccine (PCV10) was introduced in Kenya in 2011. Introduction of any PCV will perturb the existing pneumococcal population structure, thus the aim was to genotype pneumococci collected in Kilifi before PCV10. METHODS AND FINDINGS: Using multilocus sequence typing (MLST), we genotyped >1100 invasive and carriage pneumococci from children, the largest collection genotyped from a single resource-poor country and reported to date. Serotype 1 was the most common serotype causing invasive disease and was rarely detected in carriage; all serotype 1 isolates were members of clonal complex (CC) 217. There were temporal fluctuations in the major circulating sequence types (STs); and although 1-3 major serotype 1, 14 or 23F STs co-circulated annually, the two major serotype 5 STs mainly circulated independently. Major STs/CCs also included isolates of serotypes 3, 12F, 18C and 19A and each shared ≤ 2 MLST alleles with STs that circulate widely elsewhere. Major CCs associated with non-PCV10 serotypes were predominantly represented by carriage isolates, although serotype 19A and 12F CCs were largely invasive and a serotype 10A CC was equally represented by invasive and carriage isolates. CONCLUSIONS: Understanding the pre-PCV10 population genetic structure in Kilifi will allow for the detection of changes in prevalence of the circulating genotypes and evidence for capsular switching post-vaccine implementation

    The Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia : design, results and future prospects

    Get PDF
    The impact of many unfavorable childhood traits or diseases, such as low birth weight and mental disorders, is not limited to childhood and adolescence, as they are also associated with poor outcomes in adulthood, such as cardiovascular disease. Insight into the genetic etiology of childhood and adolescent traits and disorders may therefore provide new perspectives, not only on how to improve wellbeing during childhood, but also how to prevent later adverse outcomes. To achieve the sample sizes required for genetic research, the Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia were established. The majority of the participating cohorts are longitudinal population-based samples, but other cohorts with data on early childhood phenotypes are also involved. Cohorts often have a broad focus and collect(ed) data on various somatic and psychiatric traits as well as environmental factors. Genetic variants have been successfully identified for multiple traits, for example, birth weight, atopic dermatitis, childhood BMI, allergic sensitization, and pubertal growth. Furthermore, the results have shown that genetic factors also partly underlie the association with adult traits. As sample sizes are still increasing, it is expected that future analyses will identify additional variants. This, in combination with the development of innovative statistical methods, will provide detailed insight on the mechanisms underlying the transition from childhood to adult disorders. Both consortia welcome new collaborations. Policies and contact details are available from the corresponding authors of this manuscript and/or the consortium websites.Peer reviewe

    The Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia:design, results and future prospects

    Get PDF

    The Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia: design, results and future prospects

    Get PDF
    The impact of many unfavorable childhood traits or diseases, such as low birth weight and mental disorders, is not limited to childhood and adolescence, as they are also associated with poor outcomes in adulthood, such as cardiovascular disease. Insight into the genetic etiology of childhood and adolescent traits and disorders may therefore provide new perspectives, not only on how to improve wellbeing during childhood, but also how to prevent later adverse outcomes. To achieve the sample sizes required for genetic research, the Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia were established. The majority of the participating cohorts are longitudinal population-based samples, but other cohorts with data on early childhood phenotypes are also involved. Cohorts often have a broad focus and collect(ed) data on various somatic and psychiatric traits as well as environmental factors. Genetic variants have been successfully identified for multiple traits, for example, birth weight, atopic dermatitis, childhood BMI, allergic sensitization, and pubertal growth. Furthermore, the results have shown that genetic factors also partly underlie the association with adult traits. As sample sizes are still increasing, it is expected that future analyses will identify additional variants. This, in combination with the development of innovative statistical methods, will provide detailed insight on the mechanisms underlying the transition from childhood to adult disorders. Both consortia welcome new collaborations. Policies and contact details are available from the corresponding authors of this manuscript and/or the consortium websites

    Bone mineral density and risk of type 2 diabetes and coronary heart disease: A Mendelian randomization study

    No full text
    Background: Observational studies have demonstrated that increased bone mineral density is associated with a higher risk of type 2 diabetes (T2D), but the relationship with risk of coronary heart disease (CHD) is less clear. Moreover, substantial uncertainty remains about the causal relevance of increased bone mineral density for T2D and CHD, which can be assessed by Mendelian randomisation studies.  Methods: We identified 235 independent single nucleotide polymorphisms (SNPs) associated at p<5×10 -8 with estimated heel bone mineral density (eBMD) in 116,501 individuals from the UK Biobank study, accounting for 13.9% of eBMD variance. For each eBMD-associated SNP, we extracted effect estimates from the largest available GWAS studies for T2D (DIAGRAM: n=26,676 T2D cases and 132,532 controls) and CHD (CARDIoGRAMplusC4D: n=60,801 CHD cases and 123,504 controls). A two-sample design using several Mendelian randomization approaches was used to investigate the causal relevance of eBMD for risk of T2D and CHD. In addition, we explored the relationship of eBMD, instrumented by the 235 SNPs, on 12 cardiovascular and metabolic risk factors. Finally, we conducted Mendelian randomization analysis in the reverse direction to investigate reverse causality. Results: Each one standard deviation increase in genetically instrumented eBMD (equivalent to 0.14 g/cm 2) was associated with an 8% higher risk of T2D (odds ratio [OR] 1.08; 95% confidence interval [CI]: 1.02 to 1.14; p=0.012) and 5% higher risk of CHD (OR 1.05; 95%CI: 1.00 to 1.10; p=0.034). Consistent results were obtained in sensitivity analyses using several different Mendelian randomization approaches. Equivalent increases in eBMD were also associated with lower plasma levels of HDL-cholesterol and increased insulin resistance. Mendelian randomization in the reverse direction using 94 T2D SNPs or 52 CHD SNPs showed no evidence of reverse causality with eBMD. Conclusions: These findings suggest a causal relationship between elevated bone mineral density with risks of both T2D and CHD

    Bone mineral density and risk of type 2 diabetes and coronary heart disease: A Mendelian randomization study

    No full text
    Background: Observational studies have demonstrated that increased bone mineral density is associated with a higher risk of type 2 diabetes (T2D), but the relationship with risk of coronary heart disease (CHD) is less clear. Moreover, substantial uncertainty remains about the causal relevance of increased bone mineral density for T2D and CHD, which can be assessed by Mendelian randomisation studies.  Methods: We identified 235 independent single nucleotide polymorphisms (SNPs) associated at p<5×10 -8 with estimated heel bone mineral density (eBMD) in 116,501 individuals from the UK Biobank study, accounting for 13.9% of eBMD variance. For each eBMD-associated SNP, we extracted effect estimates from the largest available GWAS studies for T2D (DIAGRAM: n=26,676 T2D cases and 132,532 controls) and CHD (CARDIoGRAMplusC4D: n=60,801 CHD cases and 123,504 controls). A two-sample design using several Mendelian randomization approaches was used to investigate the causal relevance of eBMD for risk of T2D and CHD. In addition, we explored the relationship of eBMD, instrumented by the 235 SNPs, on 12 cardiovascular and metabolic risk factors. Finally, we conducted Mendelian randomization analysis in the reverse direction to investigate reverse causality. Results: Each one standard deviation increase in genetically instrumented eBMD (equivalent to 0.14 g/cm 2) was associated with an 8% higher risk of T2D (odds ratio [OR] 1.08; 95% confidence interval [CI]: 1.02 to 1.14; p=0.012) and 5% higher risk of CHD (OR 1.05; 95%CI: 1.00 to 1.10; p=0.034). Consistent results were obtained in sensitivity analyses using several different Mendelian randomization approaches. Equivalent increases in eBMD were also associated with lower plasma levels of HDL-cholesterol and increased insulin resistance. Mendelian randomization in the reverse direction using 94 T2D SNPs or 52 CHD SNPs showed no evidence of reverse causality with eBMD. Conclusions: These findings suggest a causal relationship between elevated bone mineral density with risks of both T2D and CHD

    High multiple carriage and emergence of Streptococcus pneumoniae vaccine serotype variants in Malawian children

    No full text
    BACKGROUND: Carriage of either single or multiple pneumococcal serotypes (multiple carriage) is a prerequisite for developing invasive pneumococcal disease. However, despite the reported high rates of pneumococcal carriage in Malawi, no data on carriage of multiple serotypes has been reported previously. Our study provides the first description of the prevalence of multiple pneumococcal carriage in Malawi. METHODS: The study was conducted in Blantyre and Karonga districts in Malawi, from 2008 to 2012. We recruited 116 children aged 0–13 years. These children were either HIV-infected (N = 44) or uninfected (N = 72). Nasopharyngeal samples were collected using sterile swabs. Pneumococcal serotypes in the samples were identified by microarray. Strains that could not be typed by microarray were sequenced to characterise possible genetic alterations within the capsular polysaccharide (CPS) locus. RESULTS: The microarray identified 179 pneumococcal strains (from 116 subjects), encompassing 43 distinct serotypes and non-typeable (NT) strains. Forty per cent (46/116) of children carried multiple serotypes. Carriage of vaccine type (VT) strains was higher (p = 0.028) in younger (0–2 years) children (71 %, 40/56) compared to older (3–13 years) children (50 %, 30/60). Genetic variations within the CPS locus of known serotypes were observed in 19 % (34/179) of the strains identified. The variants included 13-valent pneumococcal conjugate vaccine (PCV13) serotypes 6B and 19A, and the polysaccharide vaccine serotype 20. Serotype 6B variants were the most frequently isolated (47 %, 16/34). Unlike the wild type, the CPS locus of the 6B variants contained an insertion of the licD-family phosphotransferase gene. The CPS locus of 19A- and 20-variants contained an inversion in the sugar-biosynthesis (rmlD) gene and a 717 bp deletion within the transferase (whaF) gene, respectively. CONCLUSIONS: The high multiple carriage in Malawian children provides opportunities for genetic exchange through horizontal gene transfer. This may potentially lead to CPS locus variants and vaccine escape. Variants reported here occurred naturally, however, PCV13 introduction could exacerbate the CPS genetic variations. Further studies are therefore recommended to assess the invasive potential of these variants and establish whether PCV13 would offer cross-protection. We have shown that younger children (0–2 years) are a reservoir of VT serotypes, which makes them an ideal target for vaccination

    Fluctuation in the prevalence of major sequence types (STs) associated with invasive isolates from Kilifi.

    No full text
    <p>Invasive isolates were collected from 1994-2008 and the major STs associated with serotypes 14 (<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0081539#pone-0081539-g003" target="_blank">Figure 3A</a>) and 23F (<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0081539#pone-0081539-g003" target="_blank">Figure 3B</a>) are depicted in each panel. The total number of isolates genotyped each year (see Methods) is stated in parentheses in the x-axis labels.</p

    Comparative Genomic Analysis of Meningitis- and Bacteremia-Causing Pneumococci Identifies a Common Core Genome

    Get PDF
    Streptococcus pneumoniae is a nasopharyngeal commensal that occasionally invades normally sterile sites to cause bloodstream infection and meningitis. Although the pneumococcal population structure and evolutionary genetics are well defined, it is not clear whether pneumococci that cause meningitis are genetically distinct from those that do not. Here, we used whole-genome sequencing of 140 isolates of S. pneumoniae recovered from bloodstream infection (n = 70) and meningitis (n = 70) to compare their genetic contents. By fitting a double-exponential decaying-function model, we show that these isolates share a core of 1,427 genes (95% confidence interval [CI], 1,425 to 1,435 genes) and that there is no difference in the core genome or accessory gene content from these disease manifestations. Gene presence/absence alone therefore does not explain the virulence behavior of pneumococci that reach the meninges. Our analysis, however, supports the requirement of a range of previously described virulence factors and vaccine candidates for both meningitis- and bacteremia-causing pneumococci. This high-resolution view suggests that, despite considerable competency for genetic exchange, all pneumococci are under considerable pressure to retain key components advantageous for colonization and transmission and that these components are essential for access to and survival in sterile sites
    corecore