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Abstract

Background: The 10-valent pneumococcal conjugate vaccine (PCV10) was introduced in Kenya in 2011.
Introduction of any PCV will perturb the existing pneumococcal population structure, thus the aim was to genotype
pneumococci collected in Kilifi before PCV10.
Methods and Findings: Using multilocus sequence typing (MLST), we genotyped >1100 invasive and carriage
pneumococci from children, the largest collection genotyped from a single resource-poor country and reported to
date. Serotype 1 was the most common serotype causing invasive disease and was rarely detected in carriage; all
serotype 1 isolates were members of clonal complex (CC) 217. There were temporal fluctuations in the major
circulating sequence types (STs); and although 1-3 major serotype 1, 14 or 23F STs co-circulated annually, the two
major serotype 5 STs mainly circulated independently. Major STs/CCs also included isolates of serotypes 3, 12F,
18C and 19A and each shared ≤2 MLST alleles with STs that circulate widely elsewhere. Major CCs associated with
non-PCV10 serotypes were predominantly represented by carriage isolates, although serotype 19A and 12F CCs
were largely invasive and a serotype 10A CC was equally represented by invasive and carriage isolates.
Conclusions: Understanding the pre-PCV10 population genetic structure in Kilifi will allow for the detection of
changes in prevalence of the circulating genotypes and evidence for capsular switching post-vaccine implementation.
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Introduction

The introduction of pneumococcal conjugate vaccine (PCV)
into immunisation programmes in well-resourced countries led
to a significant reduction in pneumococcal morbidity and
mortality [1,2]. Children in resource-poor countries have a
much higher incidence of life-threatening pneumococcal
disease [3,4], thus the World Health Organisation
recommended that PCV be introduced into developing
countries with high childhood mortality, and the GAVI Alliance
has provided support for PCV introduction [5]. Pneumococcal
disease burden among young children living within the Kilifi

District on the coast of Kenya is very high: the annual incidence
of clinically-significant pneumococcal bacteraemia among
children <5 years of age who presented to the outpatient
department of Kilifi District Hospital was estimated at 436
cases per 100,000 [6]; and among children who were <1, <2
and <5 years of age and admitted to hospital the incidence was
241, 213 and 111 cases per 100,000, respectively [7].
Nasopharyngeal carriage prevalence among healthy children is
also high: the overall population-based prevalence in a pre-
PCV10 study was 66% (79% for children <1 year of age; 51%
among children 4.5-5.0 yrs of age) [8]. Therefore, in January
2011, Kenya introduced the 10-valent PCV (PCV10), which
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contains serotypes 1, 4, 5, 6B, 7F, 9V, 14, 18C, 19F and 23F,
into its childhood immunisation programme. PCV10 coverage
was estimated to be 42% among carriage isolates and >70%
among invasive pneumococci [8,9]. In January and March 2011
the Kenyan Government conducted a two-dose catch-up
campaign for all children aged <5 years in Kilifi District to
accelerate the conditions of a mature vaccination programme.
Population-based surveillance established in 2001 at Kilifi
District Hospital will be used to evaluate the impact of PCV10
introduction.

In well-resourced countries, PCV introduction led to a
significant overall reduction in the incidence of invasive
pneumococcal disease due to vaccine serotypes. PCV also led
to a profound reduction in the prevalence of nasopharyngeal
carriage of vaccine serotypes among healthy children, but with
a compensatory rise in the prevalence of nonvaccine
serotypes. This resulted in fundamental changes in the
transmission patterns of serotypes, which had an effect on
disease: the reduction in transmission of vaccine serotype
pneumococci led to a herd-protection effect, benefiting older
unvaccinated individuals, and the increased circulation of
nonvaccine serotypes led to ‘serotype replacement disease’,
which attenuated the net benefit of PCV introduction. However,
many nonvaccine serotypes appear to be inherently less
invasive than vaccine serotypes, thus the reduction in invasive
disease caused by vaccine serotypes has, in most populations,
exceeded the increase in serotype replacement disease
[10-18]. Changes in the circulating serotypes also resulted in a
concomitant change in the circulating genotypes in developed
countries, since the serotype and multilocus sequence typing
(MLST) genotype are closely associated, with known
exceptions [14,19-22]. Much of the focus centred around
changes in the prevalence of serotype 19A-associated
genotypes, since 19A was the predominant non-vaccine
serotype that increased in prevalence after PCV7 introduction,
but there were changes in the prevalence of other genotypes
as well [13,23,24].

In resource-poor countries, much less is known about which
serotypes and genotypes are circulating at a population level,
thus the impact of PCV introduction on the pneumococcal
population structure and the potential for evolution in response
to vaccine selective pressure cannot easily be predicted based
on the experience of introducing PCV to well-resourced
countries. Therefore, in this study we used MLST to provide the
first large-scale characterisation of >1100 invasive and
colonising pneumococcal isolates from a single resource-poor
country, with the aim of revealing the population structure prior
to PCV10 introduction.

Methods

Ethical Statement
The project, SSC#1357, entitled “The effect of routine

immunization with Pneumococcal Conjugate Vaccine in
children on the strain structure of invasive and carriage isolates
of S. pneumoniae in children and adults in Kilifi District”, was
reviewed by the KEMRI National Ethical Review Committee
and they approved the analysis of pneumococcal isolates

collected though routine surveillance at Kilifi District Hospital.
They also approved the analysis of carriage isolates collected
in specific research studies; for these studies individual
informed consent was obtained from every parent/guardian. All
data in this genotyping study were analysed anonymously.

Selection of Isolates for Genotyping
Invasive isolates were recovered from the blood,

cerebrospinal fluid or pleural fluid of ill children <15 years of
age from 1994-2008 (total n = 628). All available unique patient
isolates from 1994-2002 were included and isolates were
systematically selected (e.g. every other isolate in the line
listing of isolates) from years 2003-2008 to obtain 25 or 50
unique patient isolates in each year’s sample for genotyping.
Three isolate samples from 2003-2008 were mixed or
nonviable and were not genotyped.

Carriage isolates (n = 486) were collected during two
previous studies conducted in the Kilifi District. The first study
was performed in 2004 and sampled the nasopharynx of
healthy persons of all age groups [25]; all available unique
patient isolates recovered from children <5 yrs of age (n = 170)
were included in the current genotyping study. The second
study was performed from 2006-2008 and sampled healthy
children <5 years of age in a rolling cross-sectional study of
nasopharyngeal carriage; 320 isolates were randomly selected
for genotyping from the entire collection of 1868 isolates, 4 of
which were later removed as freezer stocks were nonviable [8].

In all studies, samples were cultured and pneumococci
identified using standard microbiological methods. Isolates
were serogrouped by latex agglutination and serotyped using
the Quellung method in the Kilifi Laboratory. All invasive
isolates were also serotyped by PCR using a published
protocol, modified to better suit the Kilifi serotype distribution
[26]. Any discrepancies that arose between the Quellung and
PCR results were retested until consensus was achieved and
the consensus serotypes were used in this study.

MLST, Data Confirmation and Analyses
MLST was performed according to the S. pneumoniae MLST

protocol [27] and alleles and sequence types (STs) were
assigned using the MLST website [19]. Unusual combinations
of serotype and genotype were verified by repeating the
genotyping and/or confirming the serotype. Serotype
confirmation was done either by repeat testing in Kilifi or by
PCR serotyping in Oxford using PCR serotyping primers and
protocols adapted from previously published methods [26,28].
We were unable to PCR-amplify the gdh locus for one invasive
serotype 23F isolate and the ddl locus for one carriage
serotype 19F isolate despite repeated attempts and redesigned
primers (presumably due to divergent sequence in the primer
binding regions), so these two isolates were removed from
genotyping analyses. The data were compiled and analysed
using Microsoft Excel and STATA v. 11. STs were clustered
into clonal complexes (CCs) using Phyloviz [29] with the
following settings: Dataset type, Multi-locus Sequence Typing;
Distance, eBURST Distance; and Level, SLV. The Kilifi dataset
was combined with the entire MLST database (as of February
2012; total combined n = 16,070 isolates) for the Phyloviz
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analyses. The entire Kilifi dataset was also submitted to the
MLST database.

Results

Serotype and Sequence Type Distributions and
Identification of Clonal Complexes

1114 invasive and carriage isolates were recovered from
children in Kilifi from 1994-2008 and genotyped by MLST
(Table 1). Isolate representatives of all PCV10 serotypes were
found; 8 of the 10 most abundant serotypes in the invasive
collection were PCV10 serotypes, as were 5 of the 10 most
common serotypes in the carriage collection. Although
serotype 7F was a minor serotype in this collection (n = 3
isolates), all other PCV10 serotypes were well represented
(29-161 isolates characterised per serotype). Vaccine
serotypes 1, 6B, 14 and 19F were each represented by >100
isolates.

There were 21 major (>15 isolate representatives) CCs
identified among the entire collection of pneumococci, 13 of
which were of PCV10 serotypes and 8 of which were found
among non-PCV10 serotypes (Tables 2 and 3). An initial
observation was that the STs and CCs circulating in Kilifi were
largely different to those found circulating among most
developed countries (as reported to the MLST database [19]).
We submitted 40 novel alleles and 212 novel STs to the MLST
database; the novel STs described 26.3% of the invasive
isolates and 30.9% of the carriage isolates. The clonal
complexes and sequence types found among the invasive and
carriage collections, stratified by serotype, are described in
Tables S1 and S2, respectively.

Population Genetic Structure Among PCV10 Serotypes
161 serotype 1 isolates from Kilifi were genotyped and all

were members of CC2171 (note: STserotype; Table 2). Only 3 of
the serotype 1 isolates were recovered from carriage, the rest
were isolated from patients with invasive disease. It was
previously reported that serotype 1 genotypes had a distinctive
phylogeography [30]. Ancestral ST2171 and its closely related
single locus variants (SLVs) were shown to be the predominant
serotype 1 STs in Kenya and Israel, and later were also shown
to be common in other African countries, namely Ghana,
Burkina Faso and The Gambia [31-33]. Other serotype 1
genotypes appear to predominate elsewhere [19,30]. Based on
available data CC2171 still appears to be largely an African CC
[19].

Vaccine serotype 4 isolates from Kilifi were predominantly
invasive isolates of ST853, which are members of the widely
distributed CC2464 (Table 2). CC2464 has been of recent
interest since unique recombinants (a serotype 4 to 19A
capsular switch) in the United States emerged from this CC
[34-36]. Only 1 isolate of CC246 in Kilifi expressed an
alternative serotype and this was serotype 2, a member of a
cluster of serotype 2 isolates within CC246 that have also
previously been reported in Asia and Africa [19].

All of the vaccine serotype 5 isolates (n = 44) were from
cases of invasive disease, and all were members of CC2895.
ST289 is the widely-distributed Pneumococcal Molecular

Table 1. Serotype distributions among the invasive
(1994-2008) and carriage (2004, 2006-2008) collections of
pneumococci that were genotyped by MLST.

 All Invasive isolates  Carriage isolates

Serotypea isolates 0-1y 2-4y 5-14y All ages  0-1y 2-4y All ages
1 161 33 37 88 158  0 3 3

6B 107 37 13 6 56  25 26 51

19F 104 17 4 4 25  38 41 79

14 103 51 12 13 76  15 12 27
6A 93 28 7 6 41  25 27 52

23F 86 33 8 4 45  19 22 41

5 45 30 5 10 45  0 0 0

18C 39 19 7 6 32  1 6 7

9V 31 12 2 2 16  5 10 15

4 29 8 4 11 23  2 4 6
19A 28 12 5 2 19  7 2 9
35B 26 6 0 0 6  9 11 20
15B/C 23 2 1 0 3  7 13 20
3 20 8 1 6 15  3 2 5
11A 20 2 1 0 3  7 10 17
10A 19 6 0 3 9  6 4 10
23B 18 2 0 0 2  3 13 16
12F 16 5 2 7 14  1 1 2
15A 16 2 3 0 5  7 4 11
13 15 2 0 0 2  6 7 13
34 11 3 0 0 3  3 5 8
16F 9 2 0 1 3  3 3 6
7C 9 0 1 0 1  4 4 8
19B 8 0 1 0 1  3 4 7
20 7 0 0 0 0  1 6 7
21 6 1 0 0 1  1 4 5
24F 7 2 1 1 4  0 3 3
23A 5 0 0 0 0  2 3 5
35A 5 0 0 0 0  2 3 5
29 4 2 0 1 3  1 0 1
38 4 1 1 0 2  1 1 2
10F 4 2 1 0 3  0 1 1
17F 4 0 0 0 0  2 2 4
10B 3 0 0 0 0  0 3 3
33B 3 1 0 0 1  1 1 2

7F 3 3 0 0 3  0 0 0
9L 3 0 0 2 2  0 1 1
8 2 0 0 0 0  1 1 2
37 2 0 0 0 0  1 1 2
18F 2 2 0 0 2  0 0 0
28F 2 1 0 0 1  1 0 1
33D 2 0 0 0 0  2 0 2
35F 2 0 0 0 0  0 2 2
2 1 1 0 0 1  0 0 0
18 1 0 0 0 0  0 1 1
31 1 0 0 0 0  0 1 1
15F 1 0 0 0 0  0 1 1
18B 1 1 0 0 1  0 0 0
22A 1 1 0 0 1  0 0 0
9N 1 0 0 0 0  1 0 1
nontypeable 1 0 0 0 0  1 0 1
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Epidemiology Network (PMEN) clone represented by the
Columbia5-19 strain [37] and although it was a common ST (n
= 14 isolates), ST2455, an SLV of ST2895, was more prevalent
in Kilifi (n = 26 isolates).

One major serotype 9V CC was identified (CC7069V) and
100% of the CC706 isolates expressed serotype 9V. 39
vaccine serotype 18C isolates were characterised in this study
and 35 of these were members of CC138118C. ST138118C

shares only the xpt MLST allele with ST11318C (PMEN clone
Netherlands18C-36), which is a widely-distributed genotype
associated with serotype 18C [19].

Among vaccine serotypes 6B, 14, 19F and 23F there were
two major CCs circulating for each serotype and in each case
the two CCs defined a large proportion of the isolate
representatives for each serotype: 45% of 107 serotype 6B
isolates; 85% of 103 serotype 14 isolates; 64% of 104 serotype
19F isolates; and 76% of 86 serotype 23F isolates (Table 2).
One notable observation was that all 24 Kilifi isolates of ST230
expressed serotype 14 and 83% of them were causing invasive
disease. CC230 is a widely-distributed CC that is
predominantly serotypes 14 and 19A, although ST230 (PMEN
clone Denmark14-32) isolates have been reported with
alternative serotypes [19]. ST23019A increased in prevalence in
the United States (US) and Spain after PCV7 implementation
[35,36,38]. In Kilifi, a double locus variant (DLV) of ST230 – ST
700 – was also prevalent, isolates of which exclusively
expressed serotype 3. ST7003 was the predominant genotype
associated with serotype 3 in this Kilifi collection and ST7003

isolates have been found elsewhere in Africa. The common
globally-distributed serotype 3 genotype is ST1803 (PMEN
clone Netherlands3-31), and it is only distantly related to
ST7003 (MLST alleles gki and spi are shared) [19].

Population Genetic Structure Among Non-PCV10
Serotypes

CCs 70113,15BC, 4996A, 114635B, 85210A, 9146A and 590215A
were major clones found in Kilifi, predominantly comprised of
isolates from carriage rather than invasive disease (Table 3).
CC84719A (n = 26 isolates; 100% serotype 19A) is only distantly
related (STs share ≤2 MLST alleles) to any of the other major
serotype 19A genotypes (e.g. CCs 199, 320/271/236, 695) that
circulate in many countries, which have significantly increased
post-PCV introduction in the US and elsewhere [35,36,39,40].

All serotype 12F isolates (n = 16) from Kilifi were members of
CC98912F and isolates of this CC have also been found

Table 1 (continued).

 All Invasive isolates  Carriage isolates

Serotypea isolates 0-1y 2-4y 5-14y All ages  0-1y 2-4y All ages
Total 1114 338 117 173 628  217 269 486

a. Serotypes in boldface font are included in PCV10. Invasive isolates were
serotyped by both Quellung and PCR; discordant results were generally at the
level of serotype (e.g. 6A vs. 6B). Testing was repeated until consensus was
achieved and the consensus serotypes were used in this study.
doi: 10.1371/journal.pone.0081539.t001

Table 2. Major clonal complexesa identified among isolates
of PCV10 serotypes.

CC ST Total  Invasive  Carriage  
Predominant
serotype

Other
serotype(s)

2171 -- 161 158 3 1 (100%) -
 217 106 104 2 1 -
 613 27 26 1 1 -
 614 26 26 0 1 -
 Other 2 2 0 1 -
2464 -- 24 20 4 4 (95.8%) 2
 853 20 17 3 4 -
 Other 4 3 1 4 (75.0%) 2
2895 -- 44 44 0 5 (100%) -
 245 26 26 0 5 -
 289 14 14 0 5 -
 Other 4 4 0 5 -
7069V -- 17 5 12 9V (100%) -
 706 7 2 5 9V -
 5283 6 2 4 9V -
 Other 4 1 3 9V -
138118C -- 35 28 7 18C (100%) -
 1381 31 24 7 18C -
 Other 4 4 0 18C (75.0%) 18B
8546B -- 30 13 17 6B (86.7%) 6A
 854 28 13 15 6B (85.7%) 6A
 Other 2 0 2 6B -
27136B -- 24 17 7 6B (91.7%) 6A, 23F
 2713 10 7 3 6B -
 5302 6 6 0 6B -
 Other 8 4 4 6B (75.0%) 6A, 23F
6314 -- 61 42 19 14 (100%) -
 842 44 27 17 14 -
 2716 5 5 0 14 -
 Other 12 10 2 14 -
23014,3 -- 40 31 9 14 (67.5%) 3
 230 24 20 4 14 -
 700 11 8 3 3 -
 Other 5 3 2 14 (60.0%) 3

84419F -- 50 10 40 19F (92.0%)
11A, 14, 23A,
23F

 844 19 6 13 19F (94.7%) 14
 5339 15 2 13 19F (80.0%) 11A, 23A, 23F
 5367 5 -- 5 19F -
 Other 11 2 9 19F -
271519F -- 21 9 12 19F (95.2%) 14
 2715 11 4 7 19F -
 6088 6 4 2 19F (83.3%) 14
 Other 4 1 3 19F -
271423F -- 43 23 20 23F (100%) -
 2714 39 22 17 23F -
 Other 4 1 3 23F -
98823F -- 25 16 9 23F (88.0%) 4, 14, 19F, 35B
 988 17 10 7 23F (94.1%) 19F
 Other 8 6 2 23F (62.5%) 4, 14, 35B
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Table 2 (continued).

Note: CC = clonal complex; ST = sequence type; ‘-’ indicates that no other
serotypes were detected.
a. CCs with >15 isolate representatives shown here; STs within a CC that have
fewer than 5 isolate representatives are grouped as “Other”.
doi: 10.1371/journal.pone.0081539.t002

Table 3. Major clonal complexesa identified among isolates
of non-PCV10 serotypes.

CC ST Total  Invasive  Carriage  
Predominant
serotype(s)

Other
serotypes

70113,15BC -- 31 5 26
13 (48.4%),
15BC (16.1%)

6B, 9V, 23F

 701 18 5 13
13 (61.1%), 6B
(16.7%)

9V (11.1%),
15BC (11.1%)

 5340 6 -- 6 15BC -

 Other 7 0 7
13 (57.1%),
15BC (28.6%)

23F

590215A -- 27 8 19 15A (68.8%)
9V, 11A,
15BC, 18C

 840 8 3 5 9V (37.5%)
35A (25.0%),
11A, 15BC,
35B

 5336 7 3 4 15A (71.4%) 15BC, 18C

 Other 12 2 10
15A (50.0%),
35A (25.0%)

11A (16.7%),
9V

84719A -- 26 18 8 19A (100%) -
 847 20 13 7 19A -
 Other 6 5 1 19A -
4996A -- 25 7 18 6A (88.0%) 6A/B, 15BC
 499 21 6 15 6A (95.2%) 15BC

 Other 4 1 3
6A (75.0%), 6B
(25.0%)

-

114635B -- 25 5 20 35B (84.0%) 17F, 23F, 29
 1146 16 4 12 35B (87.5%) 23F, 29
 Other 9 1 8 35B (77.8%) 17F
85210A -- 19 9 10 10A (89.5%) 10B
 852 18 8 10 10A (88.9%) 10B
 5304 1 1 0 10A -
9146A -- 18 3 15 6A (88.9%) 6B
 5354 13 2 11 6A (84.6%) 6B
 Other 5 1 4 6A -
98912F -- 16 14 2 12F (100%) -
 989 9 9 0 12F -
 5352 6 4 2 12F -
 5797 1 1 0 12F -

Note: CC = clonal complex; ST = sequence type; ‘-’ indicates that no other
serotypes were detected.
a. CCs with >15 isolate representatives shown here; STs within a CC that have
fewer than 5 isolate representatives are grouped as “Other”.
doi: 10.1371/journal.pone.0081539.t003

elsewhere in Africa [19]. The predicted ancestral ST, ST98912F,
shares only the spi MLST allele with the widely-distributed
ST21812F (PMEN clone Denmark12F-34). Serotype 12F is
generally uncommon among carriage isolates, which is also
true of this Kilifi dataset (14 of 16 serotype 12F isolates were
invasive), and has historically been shown to cause outbreaks
[41,42], but it is not included in any currently available PCV.

Temporal Variation of CCs Containing Invasive Isolates
Collected From 1994-2008.

Since the invasive isolate dataset in Kilifi spanned 15 years,
we were able to explore temporal variation among circulating
STs and CCs over that extended period of time. 12 CCs were
comprised of >10 invasive isolate representatives in total over
the time period, which represented 68% (424/628) of the entire
invasive collection (Figure 1). The prevalence of every CC
varied over time, to a greater or lesser extent. Most obvious
was the dominance of CC2171 (n = 158), which ranged in
prevalence from 8 - 52% of all invasive isolates characterised
each year. The next most prevalent CC was CC2895 (n = 44),
which fluctuated in prevalence from 0 - 22% over the period of
surveillance. Other major CCs also varied in prevalence over
the surveillance years. These longitudinal data will be
particularly important in analyses that monitor changes in the
prevalence of individual CCs, particularly CCs of nonvaccine
serotypes such as CC230 (ST7003), CC98912F and CC84719A,
which ranged from 0-4%, 0-9% and 0-13% of all invasive
isolates characterised each year, respectively, prior to PCV10
introduction. Note that CCs not depicted in Figure 1 made only
minor contributions to the overall pre-PCV population structure
and contributed 0-3 isolates in any given year (data not
shown), but these data will be re-evaluated in future post-
PCV10 analyses.

Figures 2 and 3 depict temporal variation in the prevalence
of several of the major STs circulating among children with
invasive disease in Kilifi over the 15 year surveillance period.
These STs were selected for analysis because there were
multiple major STs (≥10 isolates) that expressed the same
serotype. Serotype 1 isolates were recovered every year of
surveillance and the three major STs associated with serotype
1 are all closely related: ST217 is the predicted ancestor and
ST613 and ST614 are SLVs of ST217. Either two or three of
these STs were represented in 10 of the 15 surveillance years,
and in the remaining five years only one ST was detected
(Figure 2A). Figure 2B depicts the two major serotype 5 STs
(which are SLVs of each other), but despite their genetic
similarity at an ST level these STs were more restricted with
respect to when they were detected, i.e. ST2895 was
predominant in the early years of surveillance, but was
replaced by ST2455 in the latter years. In contrast, Figures 3A
and 3B depict the prevalence of pairs of unrelated serotype 14
and 23F genotypes, respectively, in each calendar year. The
two serotype 14 STs were circulating concomitantly in half of
the surveillance years, and both serotype 23F STs were
detected in four of the surveillance years (note that only 10
isolates of ST98823F were detected overall).

Figure 4 completes the picture for the circulating major STs,
demonstrating that although only one major genotype
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predominated for each of these serotypes, none of these major
genotypes circulated every year throughout the surveillance
period. Although a frequency of ≥10 isolates was used as the
criterion for “major” ST and only nine isolates of ST98912F were
recovered over the study period, the ST98912F data are shown
to demonstrate that there was no serotype 12F epidemic over
this surveillance period.

Discussion

The introduction of PCV10 is vitally important for Kenya
since the morbidity and mortality associated with
pneumococcal disease is high. The incidence of invasive
disease associated with PCV10 serotypes has decreased since
vaccination began [43], with a marked attenuation of morbidity
and mortality among vaccinated children, and potentially also
among unvaccinated older children and adults if herd
protection proves to be sufficient. It is expected that
introduction of PCV10 in Kenya will perturb the pneumococcal

Figure 1.  Prevalence of major clonal complexes (CCs) associated with invasive isolates collected in Kilifi.  The total number
of isolates genotyped each year from 1994-2008 is stated in parentheses in the y-axis labels.
doi: 10.1371/journal.pone.0081539.g001
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Figure 2.  Fluctuation in the prevalence of major sequence types (STs) associated with invasive isolates from
Kilifi.  Invasive isolates were collected from 1994-2008 and the major STs associated with serotypes 1 (Figure 2A) and 5 (Figure
2B) are depicted in each panel. The total number of isolates genotyped each year (see Methods) is stated in parentheses in the x-
axis labels.
doi: 10.1371/journal.pone.0081539.g002
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Figure 3.  Fluctuation in the prevalence of major sequence types (STs) associated with invasive isolates from
Kilifi.  Invasive isolates were collected from 1994-2008 and the major STs associated with serotypes 14 (Figure 3A) and 23F
(Figure 3B) are depicted in each panel. The total number of isolates genotyped each year (see Methods) is stated in parentheses in
the x-axis labels.
doi: 10.1371/journal.pone.0081539.g003
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population genetic structure, but a key question is whether or
not these perturbations will diminish the overall benefit of
vaccine introduction by resulting in increased nonvaccine
serotype disease. By comparison, the US has used PCV for
the longest period of time and the most notable nonvaccine
serotype increase has been that of serotype 19A disease,
which was in part due to the emergence of a novel genotype
[34-36]. Importantly, this new recombinant (ST69519A) quickly
became the third most common serotype 19A CC causing
invasive disease in the US [35], which emphasises the
importance of detecting such population-based genetic
changes.

Post-vaccine changes in the US were revealed because the
pre-vaccine pneumococcal population genetic structure in the
US was well defined. Active, population- and laboratory-based
invasive disease surveillance has been on-going in the US
since 1995 (5 years before PCV was introduced) and two
studies specifically characterised large, representative
collections of pneumococci to identify the pre-PCV7 baseline
set of genotypes circulating in the US [14,20]. The Kilifi
pneumococcal invasive disease surveillance programme is
also active, population- and laboratory-based, and collected
isolates and data for 15 years prior to PCV introduction.
Several carefully designed pneumococcal carriage studies

have also been performed during that time [8,25]. The data
(patient demographics, clinical outcome, serotype) combined
with the genotyping work described here provide a
comprehensive description of the pre-vaccine pneumococcal
population in Kilifi.

MLST has been used to characterise many thousands of
pneumococci collected across Europe, North and South
America, Australia and Asia and many of the major STs within
countries have disseminated across continents, e.g. STs 8123F,

19F, 906B, 1569V, 914, 12414, 11318C, 21812F, 1917F, 1803, 19919A
[19]. Many such STs have been identified as PMEN clones, in
part defined by their widespread nature [19,37]. Our study
demonstrated that although the major serotypes found in Kilifi
and Africa are similar to those found elsewhere in the world,
most of the major STs/CCs are different, at least as far as we
can tell from the data in the MLST database. It is important to
note that the contribution of data to the MLST database is
voluntary – investigators must submit new alleles and new STs
to the database for assignment, but only rarely do investigators
submit their entire study dataset. Once an ST is added to the
database, there is no obligation for another investigator who
subsequently detects that ST elsewhere to indicate this to the
curators. Thus, the MLST database reliably captures allelic
diversity, but we do not have all the information about all

Figure 4.  Five additional major sequence types (STs) associated with invasive isolates that circulated in Kilifi.  Major STs
associated with serotypes 12F, 19A, 6B, 4 and 18C are depicted for each surveillance year from 1994-2008. The total number of
isolates genotyped each year (see Methods) is stated in parentheses in the x-axis labels.
doi: 10.1371/journal.pone.0081539.g004
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isolates genotyped to know for certain whether some of the
STs detected in Kilifi are truly African in origin, even though
that is what the database suggests. However, with those
caveats, the MLST database currently contains over 9,000 STs
and more than 21,000 isolates recovered from all over the
globe, and we do know that Africa is generally under-
represented in the MLST database as compared to other
geographical regions. Therefore these data significantly
increase our understanding of the pneumococcal population
structure in Kilifi, and possibly in Africa more broadly. However,
since many of the major STs identified in Kilifi were different to
the major STs of the same serotypes that circulate globally, we
have little additional knowledge on which to predict their likely
increase or evolution and therefore follow-up studies will be
essential.

An interesting observation was the temporal fluctuation in
STs that expressed the same serotypes, accepting that for
some of these serotypes the numbers observed each year
were small. There were no major changes in Kilifi District (e.g.
changes in laboratory methods or practice, antimicrobial use or
stewardship, early vaccine uptake, etc.) over the surveillance
period that would have contributed to big fluctuations in the
circulating serotypes or genotypes. The prevalence of
circulating serotypes is known to vary and thus temporal
fluctuations in circulating serotypes and genotypes in Kilifi were
not surprising [44-47]; however, our data might suggest that for
serotypes 1, 14 and 23F it mattered less which of the different
STs associated with these serotypes was circulating.
Previously published papers have debated whether it is the
serotype or MLST genotype that plays a more important role in
the potential for an isolate to cause invasive disease
[22,48-50]. The argument favouring a primary role of serotype
is supported by the fact that in Kilifi different major genotypes
expressing the same serotype were detected concomitantly. All
three serotype 1 STs were closely related, but the pairs of
serotype 14 and 23F STs were unrelated. Alternatively, the two
serotype 5 STs, although closely related at the MLST loci,
appeared to be more restricted in their circulation. Perhaps the
two serotype 5 STs differ markedly elsewhere in the genome,
and as a result one serotype 5 genotype can outcompete the
other and make co-circulation less likely. It is known that the
immunological response differs for each pneumococcal
serotype [51], and thus it may be the serotype-specific immune
response that largely determines the circulation of serotypes
regardless of which genotypic backbone they maintain. More
likely, it is a particular combination of serotype (and
corresponding immunity within the human population) and
genotype that is the best explanation for the temporal patterns
of ST circulation we observed in Kilifi.

Several major CCs were comprised of nonvaccine serotype
isolates (10A, 13, 15A, 15BC and 35B) primarily recovered
from healthy children, although they were also recovered from
children with invasive disease so the potential for serotype
replacement disease remains. Serotypes 10A, 15BC and 35B

increased in prevalence in the US post-PCV7 vaccine
[14,15,23,52], but the predominant STs were different to those
found in Kilifi so the predictive power based on genotype is
minimal [14,23,24]. Nonvaccine serotypes 3, 12F and 19A
were already prevalent prior to vaccine introduction and their
ability to cause invasive disease in Kilifi and elsewhere is clear.
Serotypes 3 and 19A significantly increased in prevalence
post-vaccine implementation in the US, although serotype 12F
significantly decreased [14,15]. Serotype 19A has also
significantly increased elsewhere [40,53].

In this study we established the baseline set of genotypes in
Kilifi prior to PCV10 introduction, which will allow for the
detection of changes in prevalence of pre-existing STs and the
identification of new nonvaccine STs (as putative imports or
new recombinants). It will be essential that any perceived
increases or decreases in serotype or genotype prevalence
after PCV10 vaccination is established in Kilifi be considered in
the context of the pre-vaccine genotypic landscape.
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