252 research outputs found
Effect of Mesotrione and Nicosulfuron Mixtures With or Without Adjuvants
ABSTRACT: In Field experiments, a logarithmic sprayer was used to screen the efficacy of 28.5% mixture of nicosulfuron and mesotrione, and the herbicides applied separately. Three adjuvants were also used to assess how they affected the potency of the mixture. The objectives were to test whether a mixture was enhancing or detracting the effect relative to ADM (Additive Dose Model). The test plants were canola and barley. The 28.5% nicosulfuron mixture was acting antagonistic, irrespective of plant species. The antagonistic effect of the nicosulfuron mixture decreased the more developed the plants became; for barley, it almost disappeared 40 days after treatment. For both canola and barley, one adjuvant stood out as being highly effective in decreasing ED50 of the mixture. Antagonism was not alarmingly high, which is found for many herbicides. Results are discussed in relation to the practice of testing mixtures in the literature and the requirements for getting mixture patents
Rotação de culturas como sinergismo entre espécies para aumento da produtividade: aspectos teóricos e conceituais
«A rotação de culturas Ă© uma prĂĄtica agrĂcola de origem milenar e, em vĂĄrias civilizaçÔes da antiguidade, objetivava, principalmente, aumentar a diversidade de produtos colhidos, quando comparado Ă monocultura [...] continuamente. A rotação de culturas normalmente beneficia a espĂ©cie cultivada imediatamente na sequĂȘncia a um cultivo favorĂĄvel, como Ă© o caso dos cereais cultivados posteriormente Ă s plantas leguminosas [...]. Adicionalmente, diversos outros benefĂcios da rotação de culturas tambĂ©m se observam em longo prazo e alguns destes serĂŁo abordados nos CapĂtulos 6 e 7»
Active Brownian Particles. From Individual to Collective Stochastic Dynamics
We review theoretical models of individual motility as well as collective
dynamics and pattern formation of active particles. We focus on simple models
of active dynamics with a particular emphasis on nonlinear and stochastic
dynamics of such self-propelled entities in the framework of statistical
mechanics. Examples of such active units in complex physico-chemical and
biological systems are chemically powered nano-rods, localized patterns in
reaction-diffusion system, motile cells or macroscopic animals. Based on the
description of individual motion of point-like active particles by stochastic
differential equations, we discuss different velocity-dependent friction
functions, the impact of various types of fluctuations and calculate
characteristic observables such as stationary velocity distributions or
diffusion coefficients. Finally, we consider not only the free and confined
individual active dynamics but also different types of interaction between
active particles. The resulting collective dynamical behavior of large
assemblies and aggregates of active units is discussed and an overview over
some recent results on spatiotemporal pattern formation in such systems is
given.Comment: 161 pages, Review, Eur Phys J Special-Topics, accepte
Interactions of Saflufenacil with Other Herbicides Promoters of Oxidative Stress to Control Joyweed1
Measurement of the cross section of high transverse momentum ZâbbÌ production in protonâproton collisions at âs = 8 TeV with the ATLAS detector
This Letter reports the observation of a high transverse momentum ZâbbÌ signal in protonâproton collisions at âs=8 TeV and the measurement of its production cross section. The data analysed were collected in 2012 with the ATLAS detector at the LHC and correspond to an integrated luminosity of 19.5 fbâÂč. The ZâbbÌ decay is reconstructed from a pair of b -tagged jets, clustered with the anti-ktkt jet algorithm with R=0.4R=0.4, that have low angular separation and form a dijet with pT>200 GeVpT>200 GeV. The signal yield is extracted from a fit to the dijet invariant mass distribution, with the dominant, multi-jet background mass shape estimated by employing a fully data-driven technique that reduces the dependence of the analysis on simulation. The fiducial cross section is determined to be
ÏZâbbÂŻfid=2.02±0.20 (stat.) ±0.25 (syst.)±0.06 (lumi.) pb=2.02±0.33 pb,
in good agreement with next-to-leading-order theoretical predictions
- âŠ