7 research outputs found

    Refining analyses of copy number variation identifies specific genes associated with developmental delay

    No full text
    Copy number variants (CNVs) are associated with many neurocognitive disorders; however, these events are typically large, and the underlying causative genes are unclear. We created an expanded CNV morbidity map from 29,085 children with developmental delay in comparison to 19,584 healthy controls, identifying 70 significant CNVs. We resequenced 26 candidate genes in 4,716 additional cases with developmental delay or autism and 2,193 controls. An integrated analysis of CNV and single-nucleotide variant (SNV) data pinpointed 10 genes enriched for putative loss of function. Follow-up of a subset of affected individuals identified new clinical subtypes of pediatric disease and the genes responsible for disease-associated CNVs. These genetic changes include haploinsufficiency of SETBP1 associated with intellectual disability and loss of expressive language and truncations of ZMYND11 in individuals with autism, aggression and complex neuropsychiatric features. This combined CNV and SNV approach facilitates the rapid discovery of new syndromes and genes involved in neuropsychiatric disease despite extensive genetic heterogeneity.status: publishe

    Copy number variant analysis from exome data in 349 patients with epileptic encephalopathy

    No full text
    Infantile spasms (IS) and Lennox–Gastaut syndrome (LGS) are epileptic encephalopathies characterized by early onset, intractable seizures, and poor developmental outcomes. De novo sequence mutations and copy number variants (CNVs) are causative in a subset of cases. We used exome sequence data in 349 trios with IS or LGS to identify putative de novo CNVs. We confirm 18 de novo CNVs in 17 patients (4.8%), 10 of which are likely pathogenic, giving a firm genetic diagnosis for 2.9% of patients. Confirmation of exome‐predicted CNVs by array‐based methods is still required due to false‐positive rates of prediction algorithms. Our exome‐based results are consistent with recent array‐based studies in similar cohorts and highlight novel candidate genes for IS and LGS. Ann Neurol 2015;78:323–32

    Copy number variant analysis from exome data in 349 patients with epileptic encephalopathy

    No full text
    Infantile spasms (IS) and Lennox-Gastaut syndrome (LGS) are epileptic encephalopathies characterized by early onset, intractable seizures, and poor developmental outcomes. De novo sequence mutations and copy number variants (CNVs) are causative in a subset of cases. We used exome sequence data in 349 trios with IS or LGS to identify putative de novo CNVs. We confirm 18 de novo CNVs in 17 patients (4.8%), 10 of which are likely pathogenic, giving a firm genetic diagnosis for 2.9% of patients. Confirmation of exome-predicted CNVs by array-based methods is still required due to false-positive rates of prediction algorithms. Our exome-based results are consistent with recent array-based studies in similar cohorts and highlight novel candidate genes for IS and LGS

    Spatial and Temporal Mapping of De Novo Mutations in Schizophrenia to a Fetal Prefrontal Cortical Network

    No full text
    corecore