9 research outputs found

    Significant under expression of the DosR regulon in M. tuberculosis complex lineage 6 in sputum

    Get PDF
    YesMycobacterium africanum lineage (L) 6 is an important pathogen in West Africa, causing up to 40% of pulmonary tuberculosis (TB). The biology underlying the clinical differences between M. africanum and M. tuberculosis sensu stricto remains poorly understood. We performed ex vivo expression of 2179 genes of the most geographically dispersed cause of human TB, M. tuberculosis L4 and the geographically restricted, M. africanum L6 directly from sputa of 11 HIV-negative TB patients from The Gambia who had not started treatment. The DosR regulon was the most significantly decreased category in L6 relative to L4. Further, we identified nonsynonymous mutations in major DosR regulon genes of 44 L6 genomes of TB patients from The Gambia and Ghana. Using Lebek's test, we assessed differences in oxygen requirements for growth. L4 grew only at the aerobic surface while L6 grew throughout the medium. In the host, the DosR regulon is critical for M. tuberculosis in adaptation to oxygen limitation. However, M. africanum L6 appears to have adapted to growth under hypoxic conditions or to different biological niches. The observed under expression of DosR in L6 fits with the genomic changes in DosR genes, microaerobic growth and the association with extrapulmonary disease.European Research Council-INTERRUPTB starting grant nr.311725 (to BdJ, BO, FG, MA, CM)

    Shifts in Mycobacterial Populations and Emerging Drug-Resistance in West and Central Africa.

    Get PDF
    In this study, we retrospectively analysed a total of 605 clinical isolates from six West or Central African countries (Benin, Cameroon, Central African Republic, Guinea-Conakry, Niger and Senegal). Besides spoligotyping to assign isolates to ancient and modern mycobacterial lineages, we conducted phenotypic drug-susceptibility-testing for each isolate for the four first-line drugs. We showed that phylogenetically modern Mycobacterium tuberculosis strains are more likely associated with drug resistance than ancient strains and predict that the currently ongoing replacement of the endemic ancient by a modern mycobacterial population in West/Central Africa might result in increased drug resistance in the sub-region

    Use of RODAC plates to measure containment of Mycobacterium tuberculosis in a Class IIB biosafety cabinet during routine operations

    Get PDF
    AbstractObjective/backgroundGuidelines for the manipulation of Mycobacterium tuberculosis (MTB) cultures require a Biosafety Level 3 (BSL-3) infrastructure and accompanying code of conduct. In this study, we aimed to validate and apply detection methods for viable mycobacteria from surfaces in a BSL-3 MTB laboratory.MethodsWe evaluated phenotypic (Replicate Organism Detection and Counting [RODAC] plates) and molecular (propidium monoazide [PMA]-based polymerase chain reaction [PCR]) approaches for the detection of viable mycobacteria, as well as the effect of 70% ethanol applied for 5min for disinfection against mycobacteria. For validation of the method, recovery of serial dilutions of Mycobacterium bovis bacillus Calmette–Guérin from glass slides was measured. Subsequently, we stamped surfaces in and around the biosafety cabinet (BSC) after different technicians had manipulated high bacterial load suspensions for routine drug-susceptibility testing in a Class II BSC.ResultsRODAC stamping could detect as few as three bacteria on slides stamped either 5min or 60min after inoculation. PMA-based PCR, tested in parallel, did not pass validation. Mycobacteria were still detected after 5-min disinfection with ethanol 70%. In the BSL-3, from 201 RODAC-stamped surfaces, MTB was detected in four: three inside a BSC—on a tube cap and on an operator’s gloves—and one outside, on an operator’s gown.ConclusionRODAC plates detect mycobacteria at low numbers of microorganisms. In addition, this method allowed us to show that 70% ethanol does not reliably kill mycobacteria when applied for 5min to a dried surface, and that MTB bacilli may arrive outside a Class II BSC during routine practice, although the route could not be documented

    First insights into circulating Mycobacterium tuberculosis complex lineages and drug resistance in Guinea.

    Get PDF
    In this study we assessed first-line anti-tuberculosis drug resistance and the genotypic distribution of Mycobacterium tuberculosis complex (MTBC) isolates that had been collected from consecutive new tuberculosis patients enrolled in two clinical trials conducted in Guinea between 2005 and 2010. Among the total 359 MTBC strains that were analyzed in this study, 22.8% were resistant to at least one of the first line anti-tuberculosis drugs, including 2.5% multidrug resistance and 17.5% isoniazid resistance, with or without other drugs. In addition, further characterization of isolates from a subset of the two trials (n = 184) revealed a total of 80 different spoligotype patterns, 29 "orphan" and 51 shared patterns. We identified the six major MTBC lineages of human relevance, with predominance of the Euro-American lineage. In total, 132 (71.7%) of the strains were genotypically clustered, and further analysis (using the DESTUS model) suggesting significantly faster spread of LAM10_CAM family (p = 0.00016). In conclusion, our findings provide a first insight into drug resistance and the population structure of the MTBC in Guinea, with relevance for public health scientists in tuberculosis control programs

    Variable ability of rapid tests to detect Mycobacterium tuberculosis rpoB mutations conferring phenotypically occult rifampicin resistance

    No full text
    We compared the ability of commercial and non-commercial, phenotypic and genotypic rapid drug susceptibility tests (DSTs) to detect rifampicin resistance (RR)-conferring ‘disputed’ mutations frequently missed by Mycobacterium Growth Indicator Tube (MGIT), namely L430P, D435Y, L452P, and I491F. Strains with mutation S450L served as positive control while wild-types were used as negative control. Of the 38 mutant strains, 5.7% were classifed as RR by MGIT, 16.2% by Trek Sensititre MYCOTB MIC plate, 19.4% by resazurin microtiter plate assay (REMA), 50.0% by nitrate reductase assay (NRA), and 62.2% by microscopic observation direct susceptibility testing (MODS). Reducing MGIT rifampicin concentration to 0.5µg/ml, and/or increasing incubation time, enhanced detection of disputed mutations from 5.7% to at least 65.7%, particularly for mutation I491F (from 0.0 to 75.0%). Compared with MGIT at standard pre-set time with 0.25µg/ml ECOFF as breakpoint, we found a statistically signifcant increase in the ability of MGIT to resolve disputed mutants and WT strains at extended incubation period of 15 and 21 days, with 0.5µg/ml and 1µg/ml ECOFF respectively. MODS detected 75.0% of the I491F strains and NRA 62.5%, while it was predictably missed by all molecular assays. Xpert MTB/RIF, Xpert Ultra, and GenoscholarTB-NTM+MDRTB detected all mutations within the 81bp RR determining region. Only GenoType MTBDRplus version 2 missed mutation L430P in 2 of 11 strains. Phenotypic and genotypic DSTs varied greatly in detecting occult rifampicin resistance. None of these methods detected all disputed mutations without misclassifying wild-type strains

    Kerrostalon peruskorjauksen hankesuunnitelma

    Get PDF
    Kerrostalon peruskorjauksen hankesuunnitelma on esimerkki-korjauskohteen hankesuunnitelma, mitä voidaan käyttää hyväksi kun tehdään yksilöidyn kohteen Hankesuunnitelmaa. Materiaalin tarkoituksena on selvittää Hankesuunnitelman sisältöä ja antaa taustatietoa korjausrakentamisen tutkimuksesta ja yleisistä ratkaisuista. Hankesuunnitelmassa on esitetty kolme erilaista linjasaneerauskonseptia, useita energiatehokkuutta parantavia konsepteja, hissirakennusvaihtoehto ja vaihtoehto, missä peruskorjausta voidaan osin rahoittaa rakentamalla lisäkerros. Materiaali auttanee myös taloyhtiötä niiden tehdessä päätöksiä eri korjauskonseptien välillä
    corecore