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A B S T R A C T

Objective/background: Guidelines for the manipulation of Mycobacterium tuberculosis (MTB)

cultures require a Biosafety Level 3 (BSL-3) infrastructure and accompanying code of con-

duct. In this study, we aimed to validate and apply detection methods for viable mycobac-

teria from surfaces in a BSL-3 MTB laboratory.

Methods: We evaluated phenotypic (Replicate Organism Detection and Counting [RODAC]

plates) and molecular (propidium monoazide [PMA]-based polymerase chain reaction

[PCR]) approaches for the detection of viable mycobacteria, as well as the effect of 70%

ethanol applied for 5 min for disinfection against mycobacteria. For validation of the

method, recovery of serial dilutions of Mycobacterium bovis bacillus Calmette–Guérin from

glass slides was measured. Subsequently, we stamped surfaces in and around the biosafety

cabinet (BSC) after different technicians had manipulated high bacterial load suspensions

for routine drug-susceptibility testing in a Class II BSC.

Results: RODAC stamping could detect as few as three bacteria on slides stamped either

5 min or 60 min after inoculation. PMA-based PCR, tested in parallel, did not pass valida-

tion. Mycobacteria were still detected after 5-min disinfection with ethanol 70%. In the

BSL-3, from 201 RODAC-stamped surfaces, MTB was detected in four: three inside a

BSC—on a tube cap and on an operator’s gloves—and one outside, on an operator’s gown.

Conclusion: RODAC plates detect mycobacteria at low numbers of microorganisms. In addi-

tion, this method allowed us to show that 70% ethanol does not reliably kill mycobacteria

when applied for 5 min to a dried surface, and that MTB bacilli may arrive outside a Class II

BSC during routine practice, although the route could not be documented.

� 2016 Asian-African Society for Mycobacteriology. Production and hosting by Elsevier Ltd.

All rights reserved.
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Introduction

Manipulation of Mycobacterium tuberculosis (MTB) cultures

requires Biosafety Level 3 (BSL-3) infrastructure, equipment,

and practices [1]. Use of liquid culture media and

inoculating-loop manipulation increase the risk of creating

aerosols, while only a few mycobacteria are sufficient to

infect a laboratory worker [2,3]. The emergence of

multidrug-resistant and extremely resistant strains requires

particular attention to containment, both by the importance

an infection may imply and by the increased volume of

drug-susceptibility testing (DST) performed [4,5]. Despite the

general recognition that BSL-3 measures effectively contain

airborne, high-risk pathogens, there is little information on

the concrete value of individual measures commonly incor-

porated in BSL-3 practices [6,7].

Culture-based tools are commonly used for detection of

microorganisms in the environment. The presence of viable

airborne particulates can be estimated using settling plates

[8], whereas monitoring for surface-bound particulates can

be done using Replicate Organism Detection and Counting

(RODAC) plates, without the need for a decontamination step

that could decrease the sensitivity of detection [9–14]. To

allow for detection of slow-growing mycobacteria, a modified

medium selective for preventing overgrowth by nonmycobac-

terial contaminants and enriched for supporting the growth

of these fastidious microorganisms should be used [15].

Although this method has to date not been validated for

mycobacteria, RODAC recovery rates described for other bac-

teria are highly variable; for example, for Listeria monocytoge-

nes, the recovery rate is only 4.15%, and for Clostridium

difficile, it is dependent on the medium used, and ranges from

0.3% to 45.8% [16,17].

Molecular methods are powerful and fast tools to detect

traces of genetic material [18]. In particular, propidiummono-

azide (PMA)–polymerase chain reaction (PCR) is useful in this

regard as it selectively amplifies DNA from viable bacteria

[19]. This method has already been successfully applied to

diagnose patients with drug-resistant MTB infection [20,21].

Surface decontamination of materials leaving the biosaf-

ety cabinet (BSC) is recommended, despite lack of evidence

that MTB can be reaerosolized from surfaces, and subse-

quently establish infection [1,22]. Where carried out, such

decontamination should be done with a fast-acting disinfec-

tant that does not affect bacilli inside culture tubes. Ethanol

(70%) is used in some settings, however, data on its effective-

ness are contradictory, with viable bacilli detected 1 min,

5 min, or 10 min after decontamination in two seminal stud-

ies [23,24].

Although BSL-3 standards call for a Class II cabinet (open,

with laminar flow), this is based primarily on data from flow

measurements rather than experimental evidence with bac-

terial detection, and these Class II cabinets are used in many

laboratories handling MTB worldwide, in both high- and low-

resource settings, where most laboratories do not meet all

BSL-3 standards [25].

In this study, we evaluated both a culture-based and a

molecular method for detection of mycobacteria from sur-
faces. We subsequently used the validated culture-based

method to test the effect of ethanol decontamination of sur-

faces and to sample different surfaces in the environment

after routine manipulation of MTB in a BSC Class II B1 [26].

Material and methods

Test strains

Validation experiments were performed using the non-

pathogenic MTB complex (MTBC) Mycobacterium bovis bacillus

Calmette–Guérin (M. bovis BCG; ITM-110295), which was

cultured on home-made Stonebrink medium (Löwenstein–

Jensen with pyruvate) for 3–4 weeks.

For quality control of media, we used the MTB reference

strain (H37Rv; ITM-083715), M. bovis BCG (ITM-110295), and

Mycobacterium terrae (ITM-110258) from the BCCM mycobacte-

ria culture collection (Belgian Coordinated Collections of

Microorganisms, Institute of Tropical Medicine, Antwerp,

Belgium).

Because the sampling was part of a risk analysis in our TB

laboratory, in accordance with our biosafety consultant, ethi-

cal approval was neither required for the BCCM samples nor

for anonymous sampling in the BSL-3 laboratory, including

those stamped on technicians’ laboratory coats.

RODAC method

RODAC plates were prepared using Middlebrook 7H11 agar,

consisting in DIFCO Mycobacteria 7H11 agar (Becton Dickin-

son, Erembodegem, Belgium) supplemented with 2.1%, Mid-

dlebrook oleic acid–albumin–Catalase–dextrose enrichment

10% [1.5% alpha-D(+)-glucose (Acros Organics, Geel, Belgium),

0.06% oleic acid (Sigma–Aldrich, Diegem, Belgium), 5% albu-

min bovine fraction V with pH modified at 6.3 (Acros Organ-

ics)], glycerol 0.5% (Merck, Overijse, Belgium), ticarcillin

50 mg/L, trimethoprim 10 mg/L, amphotericin B 10 mg/L,

and colistin 200 mg/L (all antibiotics from Sigma–Aldrich).

Each plate was prepared with 16 mL of medium, shaped as

a parabolic meniscus, and stored at 4–8 �C for a maximum

of 6 weeks. Each lot was validated by direct inoculation of

one plate with MTB H37Rv or M. bovis BCG, and another one

with M. terrae. Both plates should yield growth after 7–14-

day incubation at 34–38 �C with 7.5% CO2.

To validate the recovery of mycobacterial bacilli from sur-

faces, a suspension (1 mg/mL) of M. bovis BCG was prepared

[about 106–107 colony-forming units (CFU)/mL according to

positive control plates] with serial dilution until achieving

1 CFU on 3 different days (each starting from a different

BCG subculture). Nonsterile microscopy slides were inocu-

lated with 50 lL of those dilutions and placed in the BSC for

subsequent stamping by the RODAC plates at different time

points: within 10 s, about 5 min, or 60 min after pipetting.

Each slide was stamped once, and the stamping covered

about 1 cm2. At this point, slides had not yet completely dried

except for the 60-min time point. The contact time between

slide and RODAC plate was 1 s in the two first adjustment

experiments and subsequently 1 min. Where mentioned,



Table 1 – Medium controls.

7H11 RODAC

Dilution 1 1+ 1+
Dilution 2 11 3
Dilution 3 1 1

Date are presented as the number of colonies growing 28 days after

suspension inoculation on plates with 7H11 or RODAC medium.

Serial dilutions 1:10. ‘‘1+” codes 50–100 colonies (n = 1 for each).

RODAC = Replicate Organism Detection and Counting.
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slides were moistened with 50 lL of sterile water and added

after drying time. All BCG stamping validation experiments

were performed in triplicate. Direct inoculation of the dilu-

tions on a RODAC plate served as the positive control to calcu-

late the capture rate with stamping. In the first experiment,

an additional control was performed on Petri dishes with

plain 7H11 medium. Colonies were counted after 28 days’

incubation and considered negative at 10 weeks.

The capture rate was calculated as the mean number of

colonies on the stamped plates, divided by the mean number

of colonies on the directly inoculated RODAC plate of the

respective bacterial suspension. When the number of colo-

nies was >50/plate, it was categorized as 1+ (50–100 colonies),

2+ (100–200 colonies), 3+ (>200 colonies), or 1 (confluent).

In three different experiments, half of the slides were inac-

tivated by adding 50 lL of 70% ethanol (with 2.1% isopropyl

alcohol; from Yvsolab, Turnhout, Belgium) after 5 min or

60 min, and subsequently stamped after 5-min ethanol

contact.

PMA–PCR method

A 1-mg/mL M. bovis BCG suspension was serially diluted in

molecular-grade water and 10 lL of each dilution (about 103

to <1 CFU) was incubated with PMA (Biotium, Hayward, CA,

USA), for various combinations of incubation time

(3–15 min) and PMA concentration (10–100 lM). The suspen-

sions were subsequently centrifuged for 20 min at 4000g,

washed, and resuspended in Tris–EDTA buffer. All tubes were

exposed to 400 + 230W halogen light oriented at 45� at 20-cm
distance for different durations (2–5 min). Negative controls

were obtained by boiling part of the serial dilutions for

5 min before adding PMA, to kill all mycobacteria (internal

validation). Mixtures of dead and live bacteria were obtained

before PMA treatment by mixing boiled and nonboiled sus-

pensions at ratios of 1:1, 5:1, and 25:1 at different microorgan-

ism concentrations.

All light-treated suspensions were lysed by overnight incu-

bation with proteinase K, followed by boiling for 10 min. DNA

was extracted following the modified Mangiapan method [27],

which involved fishing DNAwith a bead-bound probe specific

for the 16S ribosomal RNA gene of MTBC (biotin–triethylene

glycol [TEG]-CGTGGGTGATCTGCCCTGCAC and biotin–TEG-

CGTCAATCCGAGAGAACCCGGA) and capturing bound

DNA with streptavidin magnetic beads. PCR was performed

with SYBR Green MTBC-specific primers for the 16S gene

(GCGCTTTAGCGGTGTGGGATGA and TCGTCGCCTTGGTAGGCCGT).

A DNA-positive control for the PCR and for the extraction

was based on purified MTB H37Rv DNA at known concentra-

tion, and was used to validate the extraction and PCR method

(without PMA). Sterile water was used as a negative control at

each step.

Sampling in the BSL-3 TB laboratory

Sampling was performed in the BSL-3 laboratory at the ITM

Mycobacteriology Unit in Antwerp, Belgium. After completion

of manipulations for DST, multiple places on the operator and

in and around the BSC Class IIB were stamped by RODAC

plates, with a 1-min contact time. Those DST manipulations,
considered at risk, were performed on routine or research

samples growing MTB, using serial 102� and 104� dilutions

from a 1-mg/mL bacterial suspension (approximately

106–107 CFU/mL) for first-line DST, and 10� and 103� dilutions

for second-line DST. As for the RODAC validation step, colo-

nies were counted after 28 days’ incubation, and considered

negative at 10 weeks. Strains were identified as MTBC with

the MPT 64 antigen test (SD Bioline, Yongin, Korea).

Results

Validation of the RODAC method

Growth of the positive control, the direct inoculum, was sim-

ilar between the antibiotic-containing RODAC plate and Petri

dish with plain 7H11 medium (Table 1). The CFUs obtained on

control plates were in line with CFUs from routine positive

control plates.

With a 1-s contact time between RODAC plates and the

slides, the capture rate by stamping was not linear. Compared

with direct inoculation, RODAC stamping with a 1-s contact

time detected bacteria directly or after 5 min, but none were

detected when stamping after 60 min, even after moistening

(data not shown). When the contact time was increased to

1 min, the capture rate increased, especially at 60 min. Upon

analyzing plates with countable numbers of colonies, the cap-

ture rate was found to be 60% (standard deviation [SD] 35%)

after 5 min, and 32% (SD 38%) after 60 min (confidence inter-

val 0–100% for both stamping times). Individual measure-

ments are shown in Fig. 1A. In addition, a suspension with

2+ growth (on control) showed a similar growth when

stamped after 5 min, and a 1+ growth when stamped after

60 min. No contamination was observed.

Inactivation by ethanol

On average, slides inoculated with diluted M. bovis BCG grew

seven colonies; addition of ethanol 5 min after inoculation

reduced the colony growth to six (87%, SD 25%). Individual

measurements are shown in Fig. 1B. When ethanol was added

60 min after inoculation, the number of colonies decreased

from 1+ to 0–3 colonies (range) or, for low dilutions (3 and

14 colonies on average), to zero.

Optimization of the PMA–PCR method

Linearity of the DNA extraction and quantitative PCR without

PMAwas established from 10 to 104 DNA copies (1 DNA copy/



Fig. 1 – Validation experiments. (A) Stamping efficiency and (B) ethanol effect. Graph showing the number of colonies growing

on each of the three RODAC plates on 2 days at the most discriminatory dilution (103� in 1 experiment and 103� and 104� on

another day). Individual measures are represented by symbols: black circles (Series 1), light grey squares (Series 2), dark grey

triangles (Series 3), whereas mean and standard deviation from triplicates are represented by horizontal lines: solid (Series

1), long-dashed (Series 2), or short-dashed (Series 3). (A) Control represents the direct inoculation on a RODAC plate; Sampling

50 and Sampling 600 are from RODAC plates stamped after 5 min and 60min, respectively, with a 1-min contact time. (B)

Control 50 represents RODAC plates stamped after 5 min, without adding ethanol. Ethanol 70% was added 5 min after

bacterial inoculation on a microscopy slide, and stamped 5 min after ethanol addition. RODAC = Replicate Organism

Detection and Counting.
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bacterium). Detection of <10 bacteria was possible, but not

consistently: five of the ten experiments had a signal for the

theoretic point of one bacterium. Although PMA has a theo-

retical ability to improve discrimination between viable and

nonviable bacteria, we observed that PCR signals from dead

bacteria were not completely inhibited after reaction with

PMA, whereas PCR signals from live bacteria were inhibited

in proportions similar to dead bacteria after reaction with

PMA.

Sampling in BSL-3 TB laboratory with RODAC plates

On 30 different days, after one of eight different technicians

had just completed manipulations for DST of MTB, we sam-

pled from a number of different locations, including the tech-

nician’s double-gloved little finger, both (gowned) forearms

and thighs, two positions on the arm rest of the BSC, and

the caps of inoculated MTB culture tubes (MGIT, LJ, or 7H11).

In total, 201 RODAC plates were stamped. The exact locations

are shown in Fig. 2. Fig. 2 also shows how the little finger is

used during DST manipulations. The schedule of sampling

is summarized in Table 2.

From those 201 stampings, five RODAC plates were positive

on different days: two colonies and 1+ growth, respectively,

on two plates stamped on little fingers, one colony from a

tube cap (on the same day as the finger plate which grew 2

colonies), one colony from a forearm, and one colony from

a thigh. All plates grew MTBC, except the positive RODAC

plate from the forearm, with one colony that failed to grow
on subculture and could not be further identified. No contam-

ination by non-mycobacteria was observed.

Discussion

The assessment of TB biosafety by monitoring the TB labora-

tory environment for the presence of viable mycobacteria is

hampered by the absence of an established methodology

and scanty data [6,7]. We developed an approach to assess

the presence of mycobacteria on surfaces in the TB labora-

tory, and present data on the efficacy of decontamination

with 70% ethanol.

Stamping with RODAC plates using a 1-min contact time

showed a high sensitivity on glass, down to 3 CFU, yet with

a wide confidence interval for capture rate; some replicates

could not be cultured, suggesting that stamping at least three

plates is necessary to evaluate the absence of viable mycobac-

teria. Sensitivity is presumably increased by extending sam-

pling to multiple surfaces.

Our capture rate with MTBC appears to be in line with

results obtained with other bacteria, detecting bacteria at a

variable rate up to 50% [16,17]. Unlike C. difficile, our results

on positive controls suggest that antibiotics used for selectiv-

ity did not have a detectable inhibitory effect onmycobacterial

growth [28]. This finding suggests that a specific liquid

growth medium could be developed for inoculation from

non-decontaminated swabs, potentially shortening growth

time [29,30]. As a different application, this medium might

be tested in settingswhere TB cultures present a high contam-



Fig. 2 – Locations of RODAC plates. (A) Stamping on the forearm, lap, and arm rest. (B) Stamping on tube caps. (C) The manner

in which the little finger is used during the manipulation to open tube caps. (D) Stamping of the little finger.

RODAC = Replicate Organism Detection and Counting.
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ination rate, not sufficiently managed when following the

World Health Organization recommendations [31].

Our RODAC approach was considered sufficiently sensitive

and selective to detect mycobacteria on surfaces in the BSL-3

TB laboratory, and therefore could be used for biosafety

assessment in TB laboratories worldwide. In our case, we

applied the RODAC method to operators (technicians) and

the environment following DST, in which high concentrations

of bacteria (1 mg/mL, about 106–107 CFU/mL) are manipulated

in liquid medium. This experiment took place in a routine

environment that respects all current recommendations for

TB manipulation: technicians had been trained on biosafety

and specific techniques according to the good laboratory prac-

tices in place in our ISO 15189-accredited (BSL-3) laboratory,

and the BSC is checked and maintained every 6 months

according to recommendations. It is not clear whether the

MTB colony on the technician’s gown arrived directly by aero-

sol from the (open front) Class II BSC, or by contact with a

contaminated finger, whichmight occur if unnoticed contam-

inated gloves are not removed inside the BSC prior to taking

one’s hand out to retrieve additional material not stored in

the BSC. Even when an (contaminated) outer glove is removed

inside the BSC, inner gloves may also be contaminated by

colonies on the tube caps when specimens are removed from

the BSC. Laminar flow might also have been disturbed by

movements around the BSC, like incubator or laboratory door

opening [12]. In our case, stamping on the arm rest, at risk of

contamination in case of an airborne leak, was always nega-
tive, making airborne contamination, which would constitute

a higher biosafety risk, less likely. Contamination on the lab-

oratory gown represents an additional risk of transporting

mycobacteria away from the BSC, with potential reaerosoliza-

tion when removing the gown.

The present results prompted us to retrain our staff on

always removing the outer gloves upon taking hands out of

the BSC, even if only briefly. In addition, a customized

closed-front Class II BSC has been installed in our BSL-3 lab-

oratory. A closed-front BSC would better contain mycobacte-

ria at the source, dramatically reducing the potential risk of

any direct escape of aerosols [32]. Moreover, using wrist cuffs

and double gloves reinforces removal of the outer gloves

before exiting the arm sleeves. Such an approach may provide

an alternative to a negative pressure laboratory in settings

with limited resources, with priorities focused on a well-

functioning BSC, its maintenance and calibration, training,

and its periodic reinforcement [25].

Detection of bacteria on laboratory coat, gloves, and tubes

also showed that RODAC stamping with our adapted medium

works on surfaces other than glass, even if capture rate may

be different.

PMA had been shown to be a promising approach to iden-

tify DNA from live bacteria, including mycobacteria [19–21].

Previous results were however from experiments with large

numbers of bacteria, and PMA was used to distinguish

between dead and living bacteria, as an alternative to DST.

Our results suggest that detecting scarce live mycobacteria



Table 2 – Stampings with RODAC plates in the BSL-3 laboratory.

Stamping date Tube cap Finger Forearm Thigh Arm rest

February 26, 2013 2 2 2
March 1, 2013 2 2 2
March 5, 2013 2 2 (1 with 1c) 2
March 7, 2013 2 2 2
March 13, 2013 1 2 2 2
March 22, 2013 1 2 2 2
March 27, 2013 1
March 29, 2013 1
August 9, 2013 8 4 (1 with 1+)
August 12, 2013 3 1
August 20, 2013 1
August 22, 2013 9 1
August 23, 2013 3
August 30, 2013 3 1
September 12, 2013 7
September 26, 2013 1
October 7, 2013 1
October 14, 2013 2
November 15, 2013 4
March 24, 2014 1 1 2 2 2
March 25, 2014 1 1 2 2 2
March 26, 2014 3 3 6 6 6
March 28, 2014 1 1 2 2 2
March 31, 2014 1 1 2 2 2
April 2, 2014 2 2 4 (1 with 1c) 4 4
April 3, 2014 1 1 2 2 2
April 4, 2014 1 1 2 2 2
April 7, 2014 1 1 2 2 2
April 8, 2014 1 1 2 2 2
May 6, 2014 1 (1c) 1 (2c) 2 2 2

Total 52 29 40 40 40

Data are presented as number of plates for each stamping on the different days. After exploratory stamping outside the BSC and detection of

one bacteria, we extended the stamping to the inside material, and later obtained one global stamping on different operators (technologists),

including for each of the following: one tube cap, the used little finger, left + right forearm, left + right thigh, and two places on arm rest.

Positive plate [and respective number of colonies (c)] are indicated in italics in brackets.

BSC = biosafety cabinet; BSL = biosafety level; RODAC = Replicate Organism Detection and Counting.
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among a dead mycobacterial population is much more diffi-

cult, and PMA–PCR does not appear to be suitable for environ-

mental monitoring.

In line with the results of Best et al. [23], 70% ethanol does

not appear to be effective at killing mycobacteria, although

our sample size is too small to draw firm conclusions.

Conclusions

In conclusion, we validated an approach—mycobacterium-s

pecific RODAC stamping—that can be readily applied in TB

laboratories to monitor biosafety. Our results further call into

question whether open Class II BSC and current recommen-

dations are sufficient to contain mycobacteria at the source

in a routine environment, particularly when handling high-

risk specimens. While ethanol did not completely kill

mycobacteria, further experiments are required to compare

disinfectants suitable for decontaminating culture tubes

without affecting their content’s viability.
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