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ABSTRACT

Mycobacterium africanum lineage (L) 6 is an important pathogen in West Africa, causing up to 40% of
pulmonary tuberculosis (TB). The biology underlying the clinical differences between M. africanum and
M. tuberculosis sensu stricto remains poorly understood. We performed ex vivo expression of 2179 genes
of the most geographically dispersed cause of human TB, M. tuberculosis L4 and the geographically
restricted, M. africanum L6 directly from sputa of 11 HIV-negative TB patients from The Gambia who had
not started treatment. The DosR regulon was the most significantly decreased category in L6 relative to
L4. Further, we identified nonsynonymous mutations in major DosR regulon genes of 44 L6 genomes of
TB patients from The Gambia and Ghana. Using Lebek's test, we assessed differences in oxygen re-
quirements for growth. L4 grew only at the aerobic surface while L6 grew throughout the medium. In the
host, the DosR regulon is critical for M. tuberculosis in adaptation to oxygen limitation. However,
M. africanum L6 appears to have adapted to growth under hypoxic conditions or to different biological
niches. The observed under expression of DosR in L6 fits with the genomic changes in DosR genes,

microaerobic growth and the association with extrapulmonary disease.
© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Mycobacterium africanum lineages (L) 5 and 6 and
M. tuberculosis sensu stricto (L1-L4, L7) belong to the M. tuberculosis
complex (MTBC) and co-evolved with distinct human populations

[1—4]. Whereas the global spread of M. tuberculosis lineages 1—4
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was associated with urbanization and population expansion, the
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two lineages of M. africanum, for reasons still unknown, primarily
remain geographically restricted to West Africa. Interestingly,
M. tuberculosis is relatively more virulent than M. africanum L6 as
evidenced by significantly faster progression, in contacts of infec-
tious cases, to active tuberculosis (TB) disease [5]. M. africanum L6
more commonly causes disease in persons with HIV infection, older
age and malnutrition, implying a more opportunistic pathogen
[6—8]. Furthermore, M. africanum lineages grow markedly slower
than M. tuberculosis [9—10]. Taken together, clear phenotypic con-
trasts exist between the lineages of M. africanum and
M. tuberculosis, yet the biology underlying the observed differences
is still poorly understood.

Lacking an environmental reservoir, the proliferation of the
MTBC relies on successful transmission from a diseased to a sus-
ceptible host via inhalation of aerosols containing bacilli. The bac-
teria maintain a complex life cycle enhancing transmission. Upon
inhalation, bacilli reaching the lungs are engulfed by alveolar
macrophages. Subsequently, infected macrophages induce immune
responses leading to the recruitment of further immune cells and
the formation of a granuloma. If the host is able to control the
pathogen, the bacilli persist within the host for prolonged periods
without causing disease. At this noninfectious stage, central
metabolism and replication are shut down with bacilli moving into
a state of dormancy until conditions for active replication, such as
immunosuppression, return [11]. During active TB, when the host is
contagious, granuloma maturation occurs leading to the release of
bacilli into airways and subsequent expectoration as infectious
aerosols [11]. To overcome this infection-to-transmission bottle-
neck, the bacterium adapted to all stages in its life cycle and
developed numerous strategies, including the ability to rapidly
adjust to changes from extracellular aerobic environments to
hypoxic and nutrient-limited conditions commonly encountered
during intracellular survival.

Mpycobacterium tuberculosis, although classified as an obligate
aerobe, survives during anaerobiosis. In the Wayne model, where
cultures undergo gradual self-generated oxygen depletion and shift
through microaerobic to anaerobic conditions, bacilli stop growing
but survive [12]. The well-studied M. tuberculosis DosR regulon is
crucial in this regard, as it controls the adaptation to oxygen limi-
tation and has also been linked to virulence [13—14]. A recent study
described roles for a number of metabolic pathways in the refer-
ence strain H37Rv (M. tuberculosis L4) by demonstrating regulatory
networks were built around DosR (DevR) and Rv0081, indicating
they are the major sensors orchestrating the switch from aerobic to
anaerobic survival [15]. Further, dosR (devR) was upregulated dur-
ing hypoxia and downregulated upon reaeration, a switch that can
occur within 5 min [14—15]. In vitro, dosR is overexpressed in Bei-
jing strains (lineage 2) [16—17]. However, little is known about the
state and expression of genes within the DosR regulon of
M. africanum and its response to hypoxia, although early literature
indicated a preference for microaerobic growth [18].

Previous studies suggest a different intracellular survival strat-
egy of M. africanum L6 when compared to M. tuberculosis evidenced
by non-synonymous mutations in 5 of 7 operons essential for
intracellular survival within host macrophages [10]. We here pre-
sent results from an exploratory analysis in which we compared the
ex vivo expression of 2179 genes of M. tuberculosis 14 and
M. africanum L6 directly in sputa of HIV-negative TB patients. The
DosR regulon was the most significantly differentially expressed
category, with lower expression in M. africanum L6 relative to
M. tuberculosis L4. Moreover, in a phenotypic analysis using Lebek's
test for oxygen preference, we confirmed that M. africanum L6 grew
microaerobically while M. tuberculosis L4 grew best aerobically. We
also identified sequence polymorphisms in the differentially
expressed genes, as well as related genes, in 44 M. africanum L6

genomes. Our results suggest that M. africanum L6 is less dependent
on the DosR regulon and more adapted to a microaerobic lifestyle.

2. Materials and methods
2.1. Patients

Adults with new sputum smear positive TB in The Gambia were
recruited between 2006 and 2009 and isolates were genotyped as
previously described [19]. The study was approved by ethical
committees in the Gambia, Stanford, and New York University and
all patients provided written informed consent. For this analysis on
strain differences, gene expression analysis on M. tuberculosis L4
and M africanum L6 from sputum was only performed if patients
had not yet initiated treatment and were HIV negative. Eleven
sputa from 5 M. africanum L6 and 6 M. tuberculosis L4 infected in-
dividuals were consecutively selected for analysis from a total of 27
patients with RNA of sufficient quality and quantity. The HIV status
of patients infected with M. africanum L6 could only be confirmed
for 3 of the 5 patients. Therefore, although gene expression results
were available for the two patients with unconfirmed HIV status
(Supplemental Table S1, Supplementary Material online), we
excluded these from further analysis.

2.2. Sputum collection and gene expression

Spontaneously expectorated sputum was collected in guanidine
thiocyanate (GTC) and resuspended in Trizol for RNA isolation and
extraction using previously described methods [20]. We assayed
expression of 2179 selected M. tuberculosis genes (54% of the
genome) via multiplex quantitative RT-PCR (TagMan) with a
LightCycler 480 (Roche, Indianapolis, Indiana). Genotyping was
performed on parallel sputum cultures as described previously [19].

Gene expression data was normalized using a median approach
[15], a method appropriate for unpaired data with low levels of
non-detection [21]. An unpaired, equal variance t-test was used to
identify differential expression between M. africanum L6 and
M. tuberculosis L4 strains. A modified Fisher's Exact test [22—23]
was then performed on differentially expressed genes (p-
value < 0.05) on TB specific categories [20] with Bonferroni mul-
tiple testing correction. Predicted gene functional annotations used
in the supplemental tables were derived from MycoBASE and
Tuberculist [22,24].

2.3. Detection of Single Nucleotide Polymorphisms

Single Nucleotide Polymorphisms (SNPs) within and between
genes have the potential to affect gene expression. To ascertain if
there were lineage specific mutations within genes of M. africanum
L6, and whether the primers designed for L4 could bind L6, we
compared SNPs in 44 M. africanum L6 strains isolated from TB pa-
tients both from The Gambia and Ghana with a reference dataset of
SNPs in other lineages (Coscolla et al. in preparation). We used
Burrows-Wheeler Aligner (BWA) to map Illumina reads against the
MTBC reference genome described in Ref. [4]. BWA outputs were
analyzed with SAMtools [25—26] to detect variable positions with
respect to the reference genome. We applied heuristic filters to
remove problematic positions. Filtering criteria were: Phred-scaled
probability scores <20 and with read depth more than double the
average read depth of the genome. Ambiguous base calls (i.e. more
than one nucleotide called) were excluded. SNP lists for individual
strains were combined into a single non-redundant database, and
were annotated with ANNOVAR [27] using H37Rv annotation as a
reference. SNPs in repeat-containing genes (REP13E12), family
protein PE/PPE/PGRS, integrase, transposase resolvase, maturase, or
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phage were excluded, and the final high-confidence list of SNPs was
used to recover the corresponding base call for each genome.

2.4. Culture of M. africanum and M. tuberculosis in Lebek's medium

To determine if oxygen requirements for growth differed be-
tween M. tuberculosis L4 and M. africanum L6, Lebek's test for ox-
ygen preference was carried out as described previously [18],
except that the test was conducted in polypropylene-rather than
glass tubes to comply with biosafety requirements. Briefly, a 2 mg/
ml bacterial suspension was mixed with liquid agar based medium
before it solidified, followed by incubation at 37 °C.

3. Results
3.1. DosR regulon gene expression in M. africanum L6

From all 2179 mycobacterial genes tested on sputa, the DosR
regulon genes were the most differentially regulated category
expressed between M. africanum L6 and M. tuberculosis L4 before
and after multiple testing correction (Fig. 1, Supplemental Tables S1
and S2, Supplementary Material online). During the course of
infection, M. tuberculosis encounters oxygen limitation. Under such
conditions, the bacteria respond by switching on DosR, which is
crucial for hypoxic response regulation in M. tuberculosis. As indi-
cated by higher cycle threshold values, DosR regulated genes had
lower expression in M. africanum L6 when compared to
M. tuberculosis L4 (Fig. 2). On average, M. tuberculosis L4 had 2.5-
fold higher expression of DosR regulon genes than M. africanum
L6. The under expression of half (n = 26) of these genes was on
average approximately 4 fold lower in M. africanum L6 and statis-
tically significant (Supplemental Tables S2 and S3, Supplementary
Material online). These included the main regulators encoded
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Fig. 1. Volcano plot of all genes tested visualizing fold change in expression and
statistical significance. Dark blue dots indicate genes with no significant difference in
expression between M. africanum L6 and M. tuberculosis L4. Mid-dark blue shows
genes with unadjusted p value less than 0.05 and log 2 Fold change between —1 and 1.
Light blue describes genes with unadjusted p value less than 0.05 and log 2 Fold
change greater than (—)1. DosR genes significantly under expressed in M. africanum L6
relative to M. tuberculosis L4 following Bonferroni correction are shown in green. (For
interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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Fig. 2. Median qPCR cycle threshold values of the 48 dormancy regulon genes of
M. africanum L6 and M. tuberculosis L4. Genes with significantly lower expression in
M. africanum L6 relative to M. tuberculosis L4 are shown in green (same genes as the
green ones in Fig. 1). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

within the regulon, Rv0081 and DosR itself, as well as several
conserved hypotheticals, implying a relatively lower requirement
of these genes by M. africanum L6. Additionally, expression of the
DosR-regulated nitrate transporter, nark2 was significantly lower.

3.2. Detection of single nucleotide polymorphisms in major hypoxia
response genes in M.africanum L6

Nucleotide polymorphisms within genes can affect gene func-
tion and potentially influence gene regulation when found in
intergenic regions. The under expression of a significant number of
DosR regulon genes in M. africanum L6 from sputa led us to assess
the whole genome sequences of a collection of 44 M. africanum L6
strains for lineage-specific mutations within these genes. Notably,
in all 44 strains, specific nonsynonymous SNPs were detected in
Rv0080 including the intergenic region of Rv0080 and the gene
encoding the regulatory hub in M. tuberculosis during hypoxia,
Rv0081 (Fig. 3). Although not under expressed in M. africanum L6
relative to M. tuberculosis L4, lineage-specific nonsynonymous SNPs
were found in the dosT gene of all M. africanum L6 and also in phoP/
R as described previously [28].

3.3. M. africanum L6 preferentially grew microaerobically while
M. tuberculosis L4 grew aerobically

In Lebek's medium, classically used to assess oxygen preference
between strains, we compared the growth of a clinical
M. tuberculosis L4 strain, two M. africanum L6 clinical strains, and
the M. tuberculosis reference strain H37Rv (L4). Both M. africanum
L6 strains showed anaerobic growth below the surface while the
clinical L4 strain and H37Rv showed growth only at the aerobic
surface (Fig. 4). The results shown were confirmed in a technical
replicate.

4. Discussion

Evidence points to important differences between the in vitro
physiologic state of M. tuberculosis and the state of the bacteria in
the human host [20,29—-30]. Sputum is a valuable source to
investigate the physiologic state of bacteria in the lung during
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disease. A recent study indicates that M. tuberculosis transcription
in sputum mirrors M. tuberculosis transcription in the lungs [30]. In
the present study, we identified 2.5-fold lower expression of all
DosR regulon genes in M. africanum L6 relative to M. tuberculosis L4
from sputa of HIV negative patients with TB disease. Key genes
activated by M. tuberculosis in response to hypoxia, dos R-S and
regulatory hub gene Rv0081, were significantly less expressed in
M. africanum L6. Moreover, in all L6 strains sequenced we detected

lineage-specific mutations in Rv0080 and the intergenic region
(possibly within the upstream promoter region) between Rv0080
and Rv0081. The importance of RvO0080 and the Rv0080-Rv0081
intergenic region was shown in a previous study [31] in which DosR
demonstrated binding to the intergenic region between Rv0080
and Rv0081. Further, Rv0081 was found to bind an inverted repeat
element located in its own upstream region. Our findings are sig-
nificant and serve as a prelude to future studies because it is well
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known how M. tuberculosis uses the DosR regulon to quickly adjust
to hypoxic stress, commonly encountered during intracellular
survival within the macrophage and granuloma [11—12,32]. How-
ever, the state of DosR in M. africanum lineages is underexplored.
Adaptation to all stages of a complex life cycle and versatility in the
ability to switch between the different metabolic states through
regulation of DosR could be a basis for higher pathogenicity of
M. tuberculosis. Indeed, the constitutive over expression of DosR in
M. tuberculosis W/Beijing (L2) is thought to contribute to the high
virulence and transmissibility associated with this lineage [17].

As the DosR regulon has been linked to virulence, the observed
under expression might contribute to the previously described
differences between M. africanum L6 and M. tuberculosis lineages in
clinical phenotype and disease progression [5]. Different animal
models have been used to study TB infection and pathogenesis. In
guinea pigs and rabbits, where hypoxic lesions develop [33], and in
mice, dosR-S was required for full virulence. dosR-S mutants
showed a growth defect and slower replication marked by lower
counts of colony forming units in both lungs and spleen [34]. In a
recent study in macaques, the closest experimental model to
humans, Mehra and colleagues also reported the loss of clinical
signs of TB, fever, progressive weight loss and radiographic lesions,
in animals infected with dosR mutants [13]. Despite being TST
positive, macaques infected with dosR mutants failed to develop
clinical disease within the study period while those infected with
wild type and complemented strains developed early TB. A statis-
tically significant difference in survival between the wild type/
complemented infected group and the group infected with mutants
was reported. These observations confirm a major role for the full
activity of DosR in conferring virulence within the host. Moreover,
they bear striking similarity with the M. africanum L6 clinical
phenotype which, when compared to M. tuberculosis, is attenuated,
favors immunocompromised hosts, multiplies at a slower rate and
is associated with slower progression to active disease [5,8,10]. The
relative under expression of the DosR regulon in M. africanum L6
might thus be one possible explanation for the attenuated
M. africanum L6 clinical phenotype.

The DosR regulon is controlled by the response regulator DosR
and sensor kinases DosS (DevS) and DosT. The activation of DosR
depends on both DosS and DosT. Honaker and colleagues showed
the individual and collective importance of both sensors [35]. DosT,
the first of the two sensors to respond to hypoxia and to activate
DosR, is sensitive to oxygen and is a hypoxia sensor while DosS

plays a role as a redox sensor. Therefore, it was suggested that DosT
could be more important than DosS during early phase hypoxia
particularly during the shift from an aerobic to hypoxic environ-
ment [36]. The response of DosT is short lived and quickly di-
minishes following the drop in oxygen levels. At this point DosS,
also a member of the 48-gene DosR regulon, takes over and keeps
DosR induction sustained and further induced [35—36]. In DosS and
DosT single mutants, induction of the DosR regulon reduced by 45%
showing that both DosT and DosS are essential for full induction of
the DosR regulon during oxygen limitation [36]. In addition to the
significant under expression of dosS, the mutated dosT gene in all
M. africanum L6 strains analyzed could together contribute to the
overall under expression of the DosR regulon in M. africanum L6.

dosR is regulated by phoP [15,37]. Mutations in the PhoPR sys-
tem reportedly deactivate or interfere with proper functioning of
the system and contribute to loss of virulence [38]. When the PhoR
mutation common to M. bovis and M. africanum L6 was introduced
in H37Rv, the AphoPR::phoPR-bovis mutant was marked by reduced
bacillary load in human primary macrophages and severely
impaired replication in immunocompetent BALB/c mice, which
were reversed by complementation of the intact PhoPR gene. In the
same study, the RD8 deletion, shared by M. bovis and M. africanum
L6, was shown to ‘rescue’ the ESX-1 secretion system, which had
been abrogated in the H37Rv AphoPR mutant [28]. In the present
study, we confirmed nonsynonymous mutations in phoP/R. Muta-
tions in phoR were detected in all Lineage 6 strains. Although no
differential expression of phoP, phoR, or genes of the ESX-1 system
was observed between M. tuberculosis 14 and M. africanum L6,
based on the evidence that the M. bovis and M. africanum L6 PhoR
mutation abrogated ESX-1 signaling [28], the reduced expression of
the DosR regulon in M. africanum L6 is likely another downstream
effect of the mutated PhoPR system.

Besides the clinical consequences, DosR regulon expression
differences could reflect the respective bacterial physiologies and
lifestyles. Increased DosR activity in M. tuberculosis might indicate
greater requirement for genes associated with the switch to hyp-
oxic survival. In contrast, it appears that M. africanum is naturally
more capable of growing in hypoxic environments and does not
rely on the regulatory switch to the same extent as M. tuberculosis.
This assumption was further confirmed by our growth experi-
ments, in which M. africanum L6 was able to grow aerobically and
anaerobically throughout the whole Lebek medium (a test for ox-
ygen preference), whereas M. tuberculosis L4 only grew on the

Surface

Throughout medium

Fig. 4. Lebek test for oxygen preference. Test for oxygen preference in Lebek medium for the reference strain H37Rv (L4), a clinical L4 strain and 2 clinical M. africanum strains (L6).
From left to right, tube 1, Negative control; tube 2, M. tuberculosis H37Rv; tube 3, L4 M. tuberculosis clinical strain (991508); tube 4, L6 M. africanum clinical strain (112287); tube 5, L6
M. africanum clinical strain (133158), showing diffused growth by M. africanum L6 compared to surface growth by M. tuberculosis.
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surface of the slope, supporting the traditional classification of
M. africanum L6 as microaerophilic [9,39—41]. The preference for
microaerobic growth has been further supported in a study from
1973 in which paraffin embedded culture medium was used to
show cross-sections of M. africanum colonies, which, unlike
M. tuberculosis colonies that remain strictly at the surface, grew in
the depth of the medium, explaining the umbilicated colony
morphology [42]. The relative reduced responsiveness of the DosR
regulon together with the observed preference for microaerobic
growth of M. africanum L6 could either imply a preference for
intracellular growth or adaptation to a fundamentally different
biological niche within the host.

For instance, another key enzyme regulated by DosR during
anaerobiosis in M. tuberculosis is a nitrate transporter encoded by
nark2 [43—45]. We also found that narK2 mRNA is less abundant in
M. africanum L6 when compared to M. tuberculosis L4. Traditional
biochemical, microbiological assays are in line with our findings
and showed that only a minority of M. africanum strains isolated
from Ghana and Dakar were positive for intracellular nitrate,
indicative of a general lack of NarK2 activity in M. africanum [18].
Our findings support both older and more recent MTBc speciation
data describing M. africanum L6 as nitrate reductase negative [9,46].

Limitations of the present study include the fact that gene
expression is averaged across all bacterial populations in sputum,
and that the relatively small sample size and correction for multiple
testing only allowed to detect sizeable differences in global
expression levels. However, the detected differences between
M. africanum L6 and M. tuberculosis L4 were still very significant,
supporting the magnitude of the difference in expression of the
DosR regulon between M. tuberculosis L4 and M. africanum L6. We
detected additional differentially expressed genes in M. africanum
L6 relative to M. tuberculosis L4 that did not reach statistical sig-
nificance, possibly as a result of correcting for multiple testing using
the more conservative Bonferroni method (Supplemental Table S2,
Supplementary Material online). Sample quantities also did not
permit mRNA analyses of host genes.

Although we show that M. africanum L6 is more capable of
growth under hypoxic conditions reflected by microaerobic growth
in Lebek's medium and the under expression of DosR regulon genes
relative to M. tuberculosis L4, future studies need to demonstrate
whether both pathogens would show these same differences in
expression under identical hypoxic conditions. In a recent study
where H37Rv (MTBC Lineage 4) was grown in vitro under hypoxic
conditions in the Wayne model and subsequently subjected to gene
expression analysis, dormancy regulon genes including dosR and
narK2 were overexpressed during non-replicating persistence-1
(NRP-1). Interestingly, narK2 remained highly expressed even
through NRP-2, emphasizing the importance of the dormancy
regulon in MTBC Lineage 4 [47]. Previous gene expression studies in
the in vitro Wayne model with M. tuberculosis also reported similar
findings [48—49]. Investigating the expression of M. africanum L6
genes following growth under the Wayne model for instance
should provide further insights into differences in the response of
M. africanum L6 and M. tuberculosis lineages to low oxygen.

Taken together, our results indicate that M. africanum L6 is less
reliant on DosR signaling, and might pursue a different survival
strategy within the human host than M. tuberculosis L4. Assuming
that M. africanum L6 and M. tuberculosis L4 both infect the same
host tissues, a loss of DosR regulon activity could be due to a DosR-
independent adaptation and overall preference of M. africanum L6
to hypoxic, or even, anaerobic growth. Supporting this is a recent
study that described an association of M. africanum L6 and
extrapulmonary disease, reflective of an anaerobic niche [8]. Given
that transmission to new hosts depends on the development of
pulmonary disease, the evolutionary advantage of extrapulmonary

disease is not clear. While M. africanum L6 is as transmissible as
M. tuberculosis L4 from pulmonary TB patients to their contacts [5],
we postulate that a relatively larger reservoir of latent and/or
extrapulmonary infection by M. africanum L6 may offer a degree of
protection against re-infection with the more virulent
M. tuberculosis L4, maintaining M. africanum L6 endemicity in West
Africa.

5. Conclusion

Using ex vivo sputum expression data, we show for the first time
directly in sputum samples from patients with TB that the DosR
regulon was significantly less expressed in M. africanum L6
compared to M. tuberculosis L4. We describe a clinically relevant
lineage, M. africanum L6, which appears to have adapted to growth
under hypoxic conditions or different biological niches. We provide
gene expression, phenotypic and sequencing data supporting this.
M. africanum L6 permits to study factors that have contributed to
the virulence and success of the MTBc, which could be exploited to
target further attenuation. Such studies will improve understand-
ing of additional biologically relevant differences between
M. tuberculosis and M. africanum.

Such a comparison is also justified by the consideration of the
DosR regulon as potential vaccine- and drug target, aiming to
curtail mycobacterial survival. Over the last decade, M. tuberculosis
respiration and energy metabolism has been targeted in TB drug
discovery with success. Roles for the DosR regulon in the mecha-
nism of action of drugs and phenotypic drug tolerance have been
reported [50—51]. If we are to make greater strides in controlling
this well adapted human pathogen, whether through novel thera-
pies or vaccines, it will be essential to acquire deeper insight into
the role the DosR regulon plays under different stimuli and the full
spectrum of influence it has on metabolism and disease develop-
ment by all the different MTBc lineages. The imminent question is
whether the DosR regulon will be a viable target in all MTBc strains.
This remains to be answered. Understanding strain differences in
more detail will facilitate the development of improved therapies
useful in all TB endemic settings.
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